Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imides deprotonation

Another variation of the Madelung synthesis involves use of an O-alkyl or O-silyl imidate as the C2 electrophile. The mechanistic advantage of this modification stems from avoiding competing N-deprotonation, which presumably reduces the electrophilicity of the amide group under the classical conditions. Examples of this approach to date appear to have been limited to reactants with a EW substituent at the o-alkyl group[15,16]. [Pg.29]

Azole iV-oxides, iV-imides and iV-ylides are formally betaines derived from iV-hydroxy-, iV-amino- and iV-alkyl-azolium compounds. Whereas iV-oxides (Section 4.02.3.12.6) are usually stable as such, in most cases theiV-imides (Section 4.02.3.12.5) andiV-ylides (Section 4.02.3.12.3) are found as salts which deprotonate readily only if the exocyclic nitrogen or carbon atom carries strongly electron-withdrawing groups. [Pg.43]

Another alternative for preparing a primary amine from an alkyl halide is the Gabriel amine synthesis, which uses a phthalimide alkylation. An imide (—CONHCO—) is similar to a /3-keto ester in that the acidic N-H hydrogen is flanked by two carbonyl groups. Thus, imides are deprotonated by such bases as KOH, and the resultant anions are readily alkylated in a reaction similar to the acetoacetic ester synthesis (Section 22.7). Basic hydrolysis of the N-alkylated imide then yields a primary amine product. The imide hydrolysis step is analogous to the hydrolysis of an amide (Section 21.7). [Pg.929]

All three amides are evidently mixtures of tautomers. It should be noted that the nitrogen atom in the imide form is sterically unhindered and sufficiently basic to provoke deprotonation of silylated AN... [Pg.478]

The influence of secondary structure on reactions of deamidation has been confirmed in a number of studies. Thus, deamidation was inversely proportional to the extent of a-helicity in model peptides [120], Similarly, a-hel-ices and /3-turns were found to stabilize asparagine residues against deamidation, whereas the effect of /3-sheets was unclear [114], The tertiary structure of proteins is also a major determinant of chemical stability, in particular against deamidation [121], on the basis of several factors such as the stabilization of elements of secondary structure and restrictions to local flexibility, as also discussed for the reactivity of aspartic acid residues (Sect. 6.3.3). Furthermore, deamidation is markedly decreased in regions of low polarity in the interior of proteins because the formation of cyclic imides (Fig. 6.29, Pathway e) is favored by deprotonation of the nucleophilic backbone N-atom, which is markedly reduced in solvents of low polarity [100][112],... [Pg.324]

The scope of Michael additions with catalysts containing cyclohexane-diamine scaffolds was broadened by Li and co-workers [95]. When screening for a catalyst for the addition of phenylthiol to a,p-nnsatnrated imides, the anthors fonnd that thiourea catalyst 170 provided optimal enantioselectivities when compared to Cinchon alkaloids derivatives (Scheme 41). Electrophile scope inclnded both cyclic and acyclic substrates. Li attributed the enantioselectivity to activation of the diketone electrophiles via hydrogen-bonding to the thiourea, with simultaneous deprotonation of the thiol by the tertiary amine moiety of the diamine (170a and 170b). Based on the observed selectivity, the anthors hypothesized that the snbstrate-catalyst... [Pg.174]

Alternatively, the imide-acid chloride is reacted with methanol to give the imide ester which, after borohydride reduction and triethylsilane/trifluoroacetic acid treatment, furnishes the bicyclic lactam 6 as a racemate. The latter is acylated with either propanoyl chloride or 3-phcnylpropanoyl chloride and the resulting amides 7 deprotonated and alkylated with (bro-momethyljbenzene or iodomethane, respectively, to give the major alkylation products 8 with d.r. >98 2 and in 65% yield3. [Pg.908]

Base-catalysed hydrolysis. The hydroxide ion attacks the nitrile carhon, followed hy protonation on the unstable nitrogen anion to generate an imidic acid. The imidic acid tautomerizes to the more stable amide via deprotonation on oxygen and protonation on nitrogen. The base-catalysed amide is converted to carboxylic acid in several steps as discussed earlier for the hydrolysis of amides. [Pg.264]

Good results have been achieved in phosphonio-catalysed alkylation of active methylene compounds and imides which may be steroselective873 (equation 269). Aqueous sodium hydroxide deprotonation of the phosphonium salt itself in view of a Wittig reaction is... [Pg.158]


See other pages where Imides deprotonation is mentioned: [Pg.106]    [Pg.252]    [Pg.255]    [Pg.257]    [Pg.1209]    [Pg.1209]    [Pg.1210]    [Pg.1217]    [Pg.106]    [Pg.252]    [Pg.255]    [Pg.257]    [Pg.1209]    [Pg.1209]    [Pg.1210]    [Pg.1217]    [Pg.260]    [Pg.473]    [Pg.4]    [Pg.113]    [Pg.115]    [Pg.78]    [Pg.619]    [Pg.175]    [Pg.52]    [Pg.1160]    [Pg.143]    [Pg.174]    [Pg.254]    [Pg.268]    [Pg.117]    [Pg.131]    [Pg.34]    [Pg.117]    [Pg.131]    [Pg.144]    [Pg.216]    [Pg.507]    [Pg.55]    [Pg.322]    [Pg.328]    [Pg.302]    [Pg.264]    [Pg.21]    [Pg.44]    [Pg.1012]    [Pg.165]   
See also in sourсe #XX -- [ Pg.147 , Pg.446 ]




SEARCH



© 2024 chempedia.info