Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deoxyxylulose phosphate/methylerythritol pathway

Rodriguez-Concepcion, M. and Boronat, A., Elncidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in hacteria and plastids a metabolic milestone achieved throngh genomics. Plant Physiol. 130, 1079, 2002. Rodriguez-Concepcion, M., Early steps in isoprenoid biosynthesis multilevel regulation of the supply of common precursors in plant cells, Phytochem. Rev. 5, 1, 2006. Eisenreich, W., Rohdich, F., and Bacher, A., Deoxyxylulose phosphate pathway to terpenoids, Trends Plant Sci. 6, 78, 2001. [Pg.389]

E. coli and other Gram-negative bacteria synthesize the IPP and dimethylallyl diphosphate (DMAPP) by the mevalonate-independent pathway, also known as the nonmevalonate pathway (other names are deoxyxylulose phosphate or methylerythritol phosphate pathway). In contrast. Gram-positive bacteria and eukaryotes, including yeast, synthesize the side chain precursors by the mevalonate pathway. Interestingly, Streptomycetes possess both the mevalonate and nonmevalonate pathways. These pathways are the subject of Chapters 1.12, 1.13, 1.14, 1.22. [Pg.439]

Processes affecting the carbon-isotopic compositions of isoprenoid lipids. The isoprene carbon skeleton is indicated schematically in Figure 27. The corresponding biosynthetic reactant—equivalent in its role to acetyl-CoA—is isopentenyl pyrophosphate. As shown in Figure 29, this compound can be made by two different and fully independent pathways. The mevalonic-acid pathway was until recently thought to be the only route to isoprenoids. The deoxyxylulose-phosphate, or methylerythritol-phosphate, pathway was first discovered in Bacteria by Rohmer and coworkers (Flesch and Rohmer... [Pg.261]

Schoenwaelder MEA (2002) Physode distribution and the effect of thallus sunburn in Flormosira banksii (Fucales, Phaeophyceae). Bot Mar 45 262-266 Schoenwaelder MEA, Clayton MN (2000) Physode formation in embryos of Phyllospora comosa and Flormosira banksii (Phaeophyceae). Phycologia 39 1-9 Schwender J, Gemunden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212 416 123... [Pg.144]

Fig. 95.1 Terpene biosynthesis pathways and their subcellular localization in the plants. Different classes of terpenes are respectively formed in the cytosol or the plastid by two independent pathways in the plants, that is, acetate-mevalonate pathway (MEV) (cytosol) and methylerythritol 4-phosphate (MEP) or deoxyxylulose 5-phosphate pathway (DXP) (plastid). Mraioterpcmes, diterpenes, and tetraterpenes are derived from IPP and DMAPP Irran the plastidial MEP ot DXP pathway. Sesquiterpenes and triterpenes are biosynthesized from IPP and DMAPP from the cytosol pathway. Black square with a white question mark suggests a possible transport of IPP (isopentenylpyrophosphate) from the plastid to the cytosol. Other metabolites involved in the different steps are DMAPP dimethylallylpyrophosphate, FPP famesylpyrophosphate, GASP D- glyceraldehyde- 3-phosphate, GPP geranylpyrophosphate, GGPP geranylgeranylpyro-phosphate. TPSs in the circle correspond to terpene synthases. Broken arrows show several enzymatic steps (Adapted from Aharoni et al. [8] and Sallaud et al. [154])... Fig. 95.1 Terpene biosynthesis pathways and their subcellular localization in the plants. Different classes of terpenes are respectively formed in the cytosol or the plastid by two independent pathways in the plants, that is, acetate-mevalonate pathway (MEV) (cytosol) and methylerythritol 4-phosphate (MEP) or deoxyxylulose 5-phosphate pathway (DXP) (plastid). Mraioterpcmes, diterpenes, and tetraterpenes are derived from IPP and DMAPP Irran the plastidial MEP ot DXP pathway. Sesquiterpenes and triterpenes are biosynthesized from IPP and DMAPP from the cytosol pathway. Black square with a white question mark suggests a possible transport of IPP (isopentenylpyrophosphate) from the plastid to the cytosol. Other metabolites involved in the different steps are DMAPP dimethylallylpyrophosphate, FPP famesylpyrophosphate, GASP D- glyceraldehyde- 3-phosphate, GPP geranylpyrophosphate, GGPP geranylgeranylpyro-phosphate. TPSs in the circle correspond to terpene synthases. Broken arrows show several enzymatic steps (Adapted from Aharoni et al. [8] and Sallaud et al. [154])...
Schwender, J., Gerniinden, C., Lichtenthaler, H.K., 2001. Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212 (3), 416 3. [Pg.358]


See other pages where Deoxyxylulose phosphate/methylerythritol pathway is mentioned: [Pg.3418]    [Pg.169]    [Pg.2698]    [Pg.307]    [Pg.317]    [Pg.98]    [Pg.52]    [Pg.52]   


SEARCH



1-Deoxyxylulose 5-phosphate

Deoxyxylulose phosphate pathway

Methylerythritol

Methylerythritol phosphate

© 2024 chempedia.info