Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density functional theory Kohn-Sham approximation

Kohn-Sham scheme. The main error in the earlier approaches to find a density functional theory was to approximate the kinetic energy as a local density functional. All of those approximations gave large errors, and it was clear that some new way had to be found to get around this problem. [Pg.15]

The application of density functional theory to isolated, organic molecules is still in relative infancy compared with the use of Hartree-Fock methods. There continues to be a steady stream of publications designed to assess the performance of the various approaches to DFT. As we have discussed there is a plethora of ways in which density functional theory can be implemented with different functional forms for the basis set (Gaussians, Slater type orbitals, or numerical), different expressions for the exchange and correlation contributions within the local density approximation, different expressions for the gradient corrections and different ways to solve the Kohn-Sham equations to achieve self-consistency. This contrasts with the situation for Hartree-Fock calculations, wlrich mostly use one of a series of tried and tested Gaussian basis sets and where there is a substantial body of literature to help choose the most appropriate method for incorporating post-Hartree-Fock methods, should that be desired. [Pg.157]

In the preceding paragraph we have given a detailed survey of the Kohn-Sham approach to density functional theory. Now, we need to discuss some of the relevant properties pertaining to this scheme and how we have to interpret the various quantities it produces. We also will mention some areas connected to Kohn-Sham density functional theory which are still problematic. Before we enter this discussion the reader should be reminded to differentiate carefully between results that apply to the hypothetical situation in which the exact functional ExC and the corresponding potential Vxc are known and the real world in which we have to use approximations to these quantities. [Pg.64]

Are there any remedies in sight within approximate Kohn-Sham density functional theory to get correct energies connected with physically reasonable densities, i. e., without having to use wrong, that is symmetry broken, densities In many cases the answer is indeed yes. But before we consider the answer further, we should point out that the question only needs to be asked in the context of the approximate functionals for degenerate states and related problems outlined above, an exact density functional in principle also exists. The real-life solution is to employ the non-interacting ensemble-Vs representable densities p intro-... [Pg.74]

Schipper, P. R. T., Gritsenko, O. V., Baerends, E. J., 1999, Benchmark Calculations of Chemical Reactions in Density Functional Theory Comparison of the Accurate Kohn-Sham Solution With Generalized Gradient Approximations for the H2+H and H2+H2 Reactions , J. Chem. Phys., Ill, 4056. [Pg.300]

However, one feature of the HF potential is that it is not a local potential. In the case of perfect data (i.e. zero experimental error), the fitted orbitals obtained are no longer Kohn-Sham orbitals, as they would have been if a local potential (for example, the local exchange approximation [27]) had been used. Since the fitted orbitals can be described as orbitals which minimise the HF energy and are constrained produce the real density , they are obviously quite closely related to the Kohn-Sham orbitals, which are orbitals which minimise the kinetic energy and produce the real density . In fact, Levy [16] has already considered these kind of orbitals within the context of hybrid density functional theories. [Pg.267]

A new and accurate quantum mechanical model for charge densities obtained from X-ray experiments has been proposed. This model yields an approximate experimental single determinant wave function. The orbitals for this wave function are best described as HF orbitals constrained to give the experimental density to a prescribed accuracy, and they are closely related to the Kohn-Sham orbitals of density functional theory. The model has been demonstrated with calculations on the beryllium crystal. [Pg.272]

Density-functional theory, developed 25 years ago (Hohenberg and Kohn, 1964 Kohn and Sham, 1965) has proven very successful for the study of a wide variety of problems in solid state physics (for a review, see Martin, 1985). Interactions (beyond the Hartree potential) between electrons are described with an exchange and correlation potential, which is expressed as a functional of the charge density. For practical purposes, this functional needs to be approximated. The local-density approximation (LDA), in which the exchange and correlation potential at a particular point is only a function of the charge density at that same point, has been extensively tested and found to provide a reliable description of a wide variety of solid-state properties. Choices of numerical cutoff parameters or integration schemes that have to be made at various points in the density-functional calculations are all amenable to explicit covergence tests. [Pg.605]

An alternative approach to conventional methods is the density functional theory (DFT). This theory is based on the fact that the ground state energy of a system can be expressed as a functional of the electron density of that system. This theory can be applied to chemical systems through the Kohn-Sham approximation, which is based, as the Hartree-Fock approximation, on an independent electron model. However, the electron correlation is included as a functional of the density. The exact form of this functional is not known, so that several functionals have been developed. [Pg.4]

All calculations presented here are based on density-functional theory [37] (DFT) within the LDA and LSD approximations. The Kohn-Sham orbitals [38] are expanded in a plane wave (PW) basis set, with a kinetic energy cutoff of 70 Ry. The Ceperley-Alder expression for correlation and gradient corrections of the Becke-Perdew type are used [39]. We employ ah initio pseudopotentials, generated by use of the Troullier-Martins scheme [40], The coreradii used, in au, were 1.23 for the s, p atomic orbitals of carbon, 1.12 for s, p of N, 0.5 for the s of H, and 1.9, 2.0, 1.5, 1.97,... [Pg.79]

The inherent problems associated with the computation of the properties of solids have been reduced by a computational technique called Density Functional Theory. This approach to the calculation of the properties of solids again stems from solid-state physics. In Hartree-Fock equations the N electrons need to be specified by 3/V variables, indicating the position of each electron in space. The density functional theory replaces these with just the electron density at a point, specified by just three variables. In the commonest formalism of the theory, due to Kohn and Sham, called the local density approximation (LDA), noninteracting electrons move in an effective potential that is described in terms of a uniform electron gas. Density functional theory is now widely used for many chemical calculations, including the stabilities and bulk properties of solids, as well as defect formation energies and configurations in materials such as silicon, GaN, and Agl. At present, the excited states of solids are not well treated in this way. [Pg.77]

Theoretical considerations leading to a density functional theory (DFT) formulation of the reaction field (RF) approach to solvent effects are discussed. The first model is based upon isolelectronic processes that take place at the nucleus of the host system. The energy variations are derived from the nuclear transition state (ZTS) model. The solvation energy is expressed in terms of the electrostatic potential at the nucleus of a pseudo atom having a fractional nuclear charge. This procedure avoids the introduction of arbitrary ionic radii in the calculation of insertion energy, since all integrations involved are performed over [O.ooJ The quality of the approximations made are discussed within the frame of the Kohn-Sham formulation of density functional theory. [Pg.81]

Evidently, the LSD and GGA approximations are working, but not in the way the standard spin-density functional theory would lead us to expect. In Ref [36], a nearly-exact alternative theory, to which LSD and GGA are also approximations, is constructed, which yields an alternative physical interpretation in the absence of a strong external magnetic field. In this theory, Hf(r) and rti(r) are not the physical spin densities, but are only intermediate objects (like the Kohn-Sham orbitals or Fermi surface) used to construct two physical predictions the total electron density n(r) from... [Pg.27]


See other pages where Density functional theory Kohn-Sham approximation is mentioned: [Pg.243]    [Pg.361]    [Pg.959]    [Pg.389]    [Pg.155]    [Pg.19]    [Pg.57]    [Pg.58]    [Pg.63]    [Pg.67]    [Pg.69]    [Pg.77]    [Pg.81]    [Pg.82]    [Pg.88]    [Pg.105]    [Pg.109]    [Pg.115]    [Pg.165]    [Pg.165]    [Pg.179]    [Pg.272]    [Pg.85]    [Pg.84]    [Pg.99]    [Pg.455]    [Pg.229]    [Pg.87]    [Pg.340]    [Pg.403]    [Pg.227]    [Pg.227]    [Pg.8]    [Pg.41]    [Pg.170]    [Pg.173]    [Pg.211]    [Pg.240]   
See also in sourсe #XX -- [ Pg.227 ]




SEARCH



Approximate theory

Approximating functions

Approximation function

Density approximate

Density functional approximation

Density functional theory approximations

Kohn

Kohn-Sham

Kohn-Sham approximation

Kohn-Sham density

Kohn-Sham density functional theory

Kohn-Sham functional

Kohn-Sham theory

Shams

© 2024 chempedia.info