Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

DECHEMA Chemistry Data Series

J. M. Sorenson and W. Adt, Eiquid—Eiquid Equilibrium Data Collection, Dechema Chemistry Data Series, Frankfurt, Germany, Part 1,1980. [Pg.83]

G. Sorensen and J. M. W. Arit, Hquid-lJquid Equilibrium Data Collection, Binay Systems, DECHEMA Chemistry Data Series, Vol. 5, part 1, Schon Wetzel GmbH, Frankfurt/Main, Germany, 1979. [Pg.377]

DECHEMA (1977ff) DECHEMA Chemistry Data Series (DECHEMA). [Pg.354]

Gmehling, J. Onken, V., Part 1 "Aqueous-Organic Systems" in "DECHEMA Chemistry Data Series, Vol. 1, Vapor-Liquid Equilibrium Data Collection" Deutsche Gesellschaft fur Chemisches. Frankfurt, 1977. [Pg.486]

Simmrock, K. H., R. Janowsky and A. Ohnsorge, CRITICAL DATA OF PURE SUBSTANCES. Vol. II, Parts 1 and 2, Dechema Chemistry Data Series, 6000 Frankfurt/Main, Germany (1986). [Pg.2]

J. Gmehling and U. Onken, DECHEMA Chemistry Data Series 1, 2a, 443, DECHEMA, 1977. [Pg.226]

J. Gmehling, U. Onken, Vapour-Liquid Equilibrium Data Collection, DECHEMA Chemistry Data Series, vol. 1, 12 parts, DECHEMA, Frankfurt am Main, 1982. [Pg.137]

Sorensen, J.M., Arit, W. (1979) Liquid-Liquid Equilibrium Data Collection Binary Systems. Dechema Chemistry Data Series, Vol. 1, Part 1. Dechema, Frankfurt. [Pg.339]

Phase-Equilibrium Data Shaw, D. G., and A. Maczynski (eds.), IUPAC Solubility Data Series, Vol. 81 Hydrocarbons in Water and Seawater—Revised and Updated, published in 12 parts in /. Fhys. Chem. Ref. Data, 2005 and 2006 Gmehling, J., et al, Vapor-Liquid Equilibrium Data Collection Aqueous-Organic Systems, DECHEMA Chemistry Data Series, Vol. I, Part 1-ld, Schon Wetzel GmbH, Frankfurt/Main, Germany, 1988. [Pg.48]

Knapp, H., Doring, R., Oellrich, L., Plocker, U. and Prausnitz, J.M. 1982. Vapor-Liquid Equilibria for Mixtures of Low Boiling Point Substances. DECHEMA Chemistry Data Series, Vol. VI, DECHEMA, Frankfurt, Germany. [Pg.98]

J. Barthel, R. Buchner, and M. Munsterer, Electrolyte Data Collection, Parts 2 and 2 a, in G. Kreysa (ed.) DECHEMA Chemistry Data Series Vol. XII, DECHEMA, will be published 1995. [Pg.185]

W. Arlt, M. Macedo, P. Rasmussen, and J.M. Sorensen, Liquid-Liquid Equilibrium Data Collection, vol. V, Parts 1-4, DECHEMA Chemistry Data Series, Frankfurt, 1987. [Pg.521]

Gmehling, J. et al. Vapor—Liquid Equilibrium Data Collection DECHEMA Chemistry Data Series DECHEMA Frankfurt, Germany, 1977—1996 Vol. I. [Pg.159]

Dechema, Chemistry Data Series, Deutsche Gesellschaft fiir Chemisches Apparatewesen e.v., Frankfurt, West Germany, (Continuing series on physical and thermodynamic properties.) Also an on-line data base see National Technical Information Service document BMFT-FB-ID-80-006. [Pg.58]

Ambrose, D., Vapor-liquid Critical Properties, N. P. L. Teddington, Middlesex, Rep. 107, 1980 Kudchaker, A. P, G. H. Alani, and B. J. Zwolinski, Chem. Revs. 68 659-735, 1968 Matthews, J. E, Chem. Revs. 72 71-100, 1972 Simmrock, K., R. Janowsky, and A. Ohnsorge, Critical Data of Pure Substances, Parts 1 and 2, Dechema Chemistry Data Series, 1986 Other recent references for critical data can be found in Lide, D. R., CRC Handbook of Chemistry and Physics, 86th ed., CRC Press, Boca Raton, Fla., 2005. [Pg.35]

The more difficult problem is deciding upon the appropriate choice of activity coefficient model and values of the model parameters. Numerous models are available, some of which are presented in Section 2.4. A valuable reference for choosing an appropriate model is Volume 1 - Vapor-Liquid Equilibrium Data Collection of the DECHEMA Chemistry Data Series (Gmehling and Onken 1977), This volume ... [Pg.9]

In each of these models two or more adj ustable parameters are obtained, either from data compilations such as the DECHEMA Chemistry Data Series mentioned earlier or by fitting experimental activity coefficient or phase equilibrium data, as di.scussed in standard thermodynamics textbooks. Typically binary phase behavior data are used for obtaining the model parameters, and these parameters can then be used with some caution for multicomponent mixtures such a procedure is more likely to be successful with the Wilson, NRTL, and UNIQUAC models than with the van Laar equation. However, the activity coefficient model parameters are dependent on temperamre, and thus extensive data may be needed to use these models for multicomponent mixtures over a range of temperatures. [Pg.14]

Figure 4.2.1. VLE correlation of the methane and pentane binary system at 310, 377, and 444 K with the Huron-Vidal original (HVO) mixing rule with the van Laar excess fiee-energy model and the PRS V equation of state. The van Laar model parameters used are = A12/A21 = 0.1201/0.1430. Points are experimental data from the DECHEMA Chemistry Data Series, Gmehiing and Onken 1977, Vol. 6, p. 445 data tiles for this system on the accompanying disk are C1C5310.DAT, C1C5377.DAT andClC5444.DAT. Figure 4.2.1. VLE correlation of the methane and pentane binary system at 310, 377, and 444 K with the Huron-Vidal original (HVO) mixing rule with the van Laar excess fiee-energy model and the PRS V equation of state. The van Laar model parameters used are = A12/A21 = 0.1201/0.1430. Points are experimental data from the DECHEMA Chemistry Data Series, Gmehiing and Onken 1977, Vol. 6, p. 445 data tiles for this system on the accompanying disk are C1C5310.DAT, C1C5377.DAT andClC5444.DAT.

See other pages where DECHEMA Chemistry Data Series is mentioned: [Pg.35]    [Pg.50]   
See also in sourсe #XX -- [ Pg.16 , Pg.25 ]




SEARCH



DECHEMA

Data series

© 2024 chempedia.info