Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

DBFOX nickel catalyst

In the last decade, several excellent results were also published in the area of enantioselective nickel-catalysed Diels-Alder cycloadditions. Among them, the reactions of cyclopentadiene with 3-alkenoyloxazolidin-2-ones induced by (i )-BINIM-2QN provided cycloadducts in up to >99% yield, >98% de, and 96% ee. Another excellent result was achieved by using a chiral iV,iV -oxide-derived nickel catalyst in Diels-Alder cycloadditions of 3-vinylindoles with methyleneindolinones for the construction of chiral spiro[carbazole-oxindoles] in up to 97% yield, >98% de, and 98% ee. Moreover, the use of the chiral DBFOX-Ph ligand has allowed an inverse-electron-demand Diels-Alder reaction of a range of Af-sulfonyl-l-azadienes with vinyl ethers to be achieved, providing highly functionalised piperidines in up to 75% yield, 96% de, and 92% ee. [Pg.31]

Scheme 2.35 Domino Michael/cyclisation reaction of dimedone with l-(2-cro-tonoyl)-3,5-dimethylpyrazoles catalysed by an in situ generated (i ,i )-DBFOX-Ph nickel catalyst. Scheme 2.35 Domino Michael/cyclisation reaction of dimedone with l-(2-cro-tonoyl)-3,5-dimethylpyrazoles catalysed by an in situ generated (i ,i )-DBFOX-Ph nickel catalyst.
Scheme 6.1 Halogenations of p-keto esters with an in situ generated nickel catalyst derived from the DBFOX ligand. Scheme 6.1 Halogenations of p-keto esters with an in situ generated nickel catalyst derived from the DBFOX ligand.
Although the aqua nickel(II) complex A was confirmed to be the active catalyst in the Diels-Alder reaction, no information was available about the structure of complex catalyst in solution because of the paramagnetic character of the nickel(II) ion. Either isolation or characterization of the substrate complex, formed by the further complexation of 3-acryloyl-2-oxazolidinone on to the l ,J -DBFOX/ Ph-Ni(C104)2 complex catalyst, was unsuccessful. One possible solution to this problem could be the NMR study by use of the J ,J -DBFOX/Ph-zinc(II) complex (G and H, Scheme 7.9) [57]. [Pg.257]

Among the J ,J -DBFOX/Ph-transition(II) metal complex catalysts examined in nitrone cydoadditions, the anhydrous J ,J -DBFOX/Ph complex catalyst prepared from Ni(C104)2 or Fe(C104)2 provided equally excellent results. For example, in the presence of 10 mol% of the anhydrous nickel(II) complex catalyst R,R-DBFOX/Ph-Ni(C104)2, which was prepared in-situ from J ,J -DBFOX/Ph ligand, NiBr2, and 2 equimolar amounts of AgC104 in dichloromethane, the reaction of 3-crotonoyl-2-oxazolidinone with N-benzylidenemethylamine N-oxide at room temperature produced the 3,4-trans-isoxazolidine (63% yield) in near perfect endo selectivity (endo/exo=99 l) and enantioselectivity in favor for the 3S,4J ,5S enantiomer (>99% ee for the endo isomer. Scheme 7.21). The copper(II) perchlorate complex showed no catalytic activity, however, whereas the ytterbium(III) triflate complex led to the formation of racemic cycloadducts. [Pg.268]

Enantioselectivities were found to change sharply depending upon the reaction conditions including catalyst structure, reaction temperature, solvent, and additives. Some representative examples of such selectivity dependence are listed in Scheme 7.42. The thiol adduct was formed with 79% ee (81% yield) when the reaction was catalyzed by the J ,J -DBFOX/Ph aqua nickel(II) complex at room temperature in dichloromethane. Reactions using either the anhydrous complex or the aqua complex with MS 4 A gave a racemic adduct, however, indicating that the aqua complex should be more favored than the anhydrous complex in thiol conjugate additions. Slow addition of thiophenol to the dichloromethane solution of 3-crotonoyl-2-oxazolidinone was ineffective for enantioselectivity. Enantioselectivity was dramatically lowered and reversed to -17% ee in the reaction at -78 °C. A similar tendency was observed in the reactions in diethyl ether and THF. For example, a satisfactory enantioselectivity (80% ee) was observed in the reaction in THF at room temperature, while the selectivity almost disappeared (7% ee) at 0°C. [Pg.286]

With the success in Lewis acid-catalyzed thiol conjugate addition reactions mentioned above, we further tried to apply the J ,J -DBFOX/Ph-nickel(II) aqua complex catalyst to the catalyzed asymmetric conjugate addition reactions of hydroxyl-amines [88, 89]. However, after some preliminary examinations, we found that... [Pg.288]

We employed malononitrile and l-crotonoyl-3,5-dimethylpyrazole as donor and acceptor molecules, respectively. We have found that this reaction at room temperature in chloroform can be effectively catalyzed by the J ,J -DBFOX/Ph-nick-el(II) and -zinc(II) complexes in the absence of Lewis bases leading to l-(4,4-dicya-no-3-methylbutanoyl)-3,5-dimethylpyrazole in a good chemical yield and enantio-selectivity (Scheme 7.47). However, copper(II), iron(II), and titanium complexes were not effective at all, either the catalytic activity or the enantioselectivity being not sufficient. With the J ,J -DBFOX/Ph-nickel(II) aqua complex in hand as the most reactive catalyst, we then investigated the double activation method by using this catalyst. [Pg.291]

As shown above, it was not so easy to optimize the Michael addition reactions of l-crotonoyl-3,5-dimethylpyrazole in the presence of the l ,J -DBFOX/ Ph-Ni(C104)2 3H20 catalyst because a simple tendency of influence to enantio-selectivity is lacking. Therefore, we changed the acceptor to 3-crotonoyl-2-oxazolidi-none in the reactions of malononitrile in dichloromethane in the presence of the nickel(II) aqua complex (10 mol%) (Scheme 7.49). For the Michael additions using the oxazolidinone acceptor, dichloromethane was better solvent than THF and the enantioselectivities were rather independent upon the reaction temperatures and Lewis base catalysts. Chemical yields were also satisfactory. [Pg.293]

Kanemasa et al.63 reported that cationic aqua complexes prepared from the /ram-chelating tridentate ligand (i ,f )-dibenzofuran-4,6-diyl-2,2,-Mv(4-phcnyloxazolinc) (DBFOX/Ph) and various metal(II) perchlorates are effective catalysts that induce absolute chiral control in the Diels-Alder reactions of 3-alkenoyl-2-oxazolidinone dienophiles (Eq. 12.20). The nickel(II), cobalt(II), copper(II), and zinc(II) complexes are effective in the presence of six equivalents of water for cobalt and nickel and three equivalents of water for copper and zinc. [Pg.388]

Amongst the other metal catalysts employed in this reaction, high levels of enantioselectivity in the addition of aromatic thiols to conjugated oxazolidinones such as (11.37) have been achieved using the nickel complex of DBFOX ligand (11.77), which functions as a Lewis acid activator. [Pg.319]


See other pages where DBFOX nickel catalyst is mentioned: [Pg.254]    [Pg.17]    [Pg.22]    [Pg.27]    [Pg.75]    [Pg.75]    [Pg.81]    [Pg.154]    [Pg.233]    [Pg.234]    [Pg.249]    [Pg.257]    [Pg.34]    [Pg.232]    [Pg.255]    [Pg.261]    [Pg.267]    [Pg.269]    [Pg.277]    [Pg.281]    [Pg.282]    [Pg.285]    [Pg.286]    [Pg.241]    [Pg.326]    [Pg.21]    [Pg.37]    [Pg.75]    [Pg.235]    [Pg.344]    [Pg.345]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



DBFOX

© 2024 chempedia.info