Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopropanation with heteroatom-substituted carbene

Heteroatom-substituted carbene complexes are less electrophilic than the corresponding methylene, dialkylcarbene, or diarylcarbene complexes. For this reason cyclopropanation of electron-rich alkenes with the former does not proceed as readily as with the latter. Usually high reaction temperatures are necessary, with radical scavengers being used to supress side-reactions (Table 2.16). Also acceptor-substituted alkenes can be cyclopropanated by Fischer-type carbene complexes, but with this type of substrate also heating is generally required. [Pg.45]

Several reaction sequences have been reported in which Fischer-type carbene complexes are converted in situ into non-heteroatom-substituted carbene complexes, which then cyclopropanate simple olefins [306,307] (Figure 2.22). This can, for instance, be achieved by treating the carbene complexes with dihydropyridines, forming (isolable) pyridinium ylides. These decompose thermally to yield pyridine and highly electrophilic, non-heteroatom-substituted carbene complexes (Figure 2.22) [46]. [Pg.45]

Table 2.16. Cyclopropanations with stoichiometric amounts of heteroatom-substituted carbene complexes. Table 2.16. Cyclopropanations with stoichiometric amounts of heteroatom-substituted carbene complexes.
The majority of preparative methods which have been used for obtaining cyclopropane derivatives involve carbene addition to an olefmic bond, if acetylenes are used in the reaction, cyclopropenes are obtained. Heteroatom-substituted or vinyl cydopropanes come from alkenyl bromides or enol acetates (A. de Meijere, 1979 E. J. Corey, 1975 B E. Wenkert, 1970 A). The carbenes needed for cyclopropane syntheses can be obtained in situ by a-elimination of hydrogen halides with strong bases (R. Kdstcr, 1971 E.J. Corey, 1975 B), by copper catalyzed decomposition of diazo compounds (E. Wenkert, 1970 A S.D. Burke, 1979 N.J. Turro, 1966), or by reductive elimination of iodine from gem-diiodides (J. Nishimura, 1969 D. Wen-disch, 1971 J.M. Denis, 1972 H.E. Simmons, 1973 C. Girard, 1974),... [Pg.74]

Catalytic cyclopropanation of alkenes has been reported by the use of diazoalkanes and electron-rich olefins in the presence of catalytic amounts of pentacarbonyl(rj2-ris-cyclooctene)chromium [23a,b] (Scheme 6) and by treatment of conjugated ene-yne ketone derivatives with different alkyl- and donor-substituted alkenes in the presence of a catalytic amount of pentacarbon-ylchromium tetrahydrofuran complex [23c]. These [2S+1C] cycloaddition reactions catalysed by a Cr(0) complex proceed at room temperature and involve the formation of a non-heteroatom-stabilised carbene complex as intermediate. [Pg.66]

Non-heteroatom-substituted vinylcarbene complexes are readily available from alkynes and Fischer-type carbene complexes. These intermediates can undergo the inter- or intramolecular cyclopropanation reactions of non-activated alkenes. Cyclopropanation of 1,3-butadienes with these intermediates also leads to the formation of cycloheptadienes (Entry 4, Table 2.24). [Pg.71]

The reaction of heteroatom-substituted alkenes with electrophilic carbene complexes can lead to the formation of highly reactive, donor-acceptor-substituted cyclopropanes. This type of cyclopropane usually undergoes ring fission and rearrangement reactions under milder conditions than do unsubstituted cyclopropanes (Figure 4.22). [Pg.226]

It is abundantly clear from the preceding discussion that dihalocyclopropanes are versatile intermediates in organic synthesis. Although a wealth of chemistry has already been uncovered, prospects remain bright for interesting developments in the future. Areas such as the application of dihalocyclopropanes in heterocyclic synthesis via carbene insertion into C—H bonds adjacent to heteroatoms, reactions of dihalocyclopropanes with organometallics and the synthetic applications of metallated derivatives deserve further exploration. The chemistry of difluoro-, diiodo- and mixed dihalo-cyclopropanes can be expected to attract some attention. Finally, other heteroatom-substituted cyclopropanes derived ftom dihalocyclopropanes will also invoke further investigation. [Pg.1025]

Intramolecular cyclopropanations of pendant alkenes are more favorable. Heteroatom-substituted 2-aza- and 2-oxabicyclo[3.1.0]hexanes, together with 2-oxabicyclo[4.1.0] heptanes, can be prepared from chromium and tungsten Fischer carbenes having a tethered alkene chain. An interesting carbene formation via a cationic alkylidene intermediate, nucleophilic addition (see Nucleophilic Addition Rules for Predicting Direction), and intramolecular cyclopropanation is shown in Scheme 59. An intramolecular cyclopropanation via reaction of alkenyl Fischer carbene complex (28) andpropyne was used in a formal synthesis of carabrone (Scheme 60). [Pg.3229]


See other pages where Cyclopropanation with heteroatom-substituted carbene is mentioned: [Pg.106]    [Pg.2022]    [Pg.221]   


SEARCH



Carbene cyclopropanation with

Carbene cyclopropanations with

Carbene heteroatom-substituted

Carbenes cyclopropanation

Carbenes cyclopropanations with

Carbenes substitution

Carbenes, cyclopropanes

Cyclopropanes substituted

Cyclopropanes substitution

Heteroatom substitution

Heteroatom-substituted

Substitution 1,2,3-substituted cyclopropane

Substitution cyclopropanation

Substitution heteroatom-substituted

With Carbenes

With cyclopropane

© 2024 chempedia.info