Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereochemistry reductive cyclization

Reaction of (T)-(-)-2-acetoxysuccinyl chloride (78), prepared from (5)-mahc acid, using the magnesiobromide salt of monomethyl malonate afforded the dioxosuberate (79) which was cyclized with magnesium carbonate to a 4 1 mixture of cyclopentenone (80) and the 5-acetoxy isomer. Catalytic hydrogenation of (80) gave (81) having the thermodynamically favored aH-trans stereochemistry. Ketone reduction and hydrolysis produced the bicycHc lactone acid (82) which was converted to the Corey aldehyde equivalent (83). A number of other approaches have been described (108). [Pg.163]

To probe the reaction mechanism of the silane-mediated reaction, EtjSiD was substituted for PMHS in the cyclization of 1,6-enyne 34a.5 The mono-deuterated reductive cyclization product 34b was obtained as a single diastereomer. This result is consistent with entry of palladium into the catalytic cycle as the hydride derived from its reaction with acetic acid. Alkyne hydrometallation provides intermediate A-7, which upon cw-carbopalladation gives rise to cyclic intermediate B-6. Delivery of deuterium to the palladium center provides C-2, which upon reductive elimination provides the mono-deuterated product 34b, along with palladium(O) to close the catalytic cycle. The relative stereochemistry of 34b was not determined but was inferred on the basis of the aforementioned mechanism (Scheme 24). [Pg.506]

Intramolecular coupling Some aromatic diketones have been stereoselectively cy-clized under various electrolysis conditions, which, together with the substrate structure, strongly influence the stereochemistry of the formed cyclic diol. Reductive cyclization of 1,8-diaroylnaphthalenes led to trans-diols, 2,2 -diaroylbiphenyls and a, )-diaroylalkanes yielded cis-diols with different stereoselectivities depending on substrate structure and electrolysis conditions (pH, cosolvent) (Fig. 57) [310-312]. [Pg.433]

On treatment with benzeneselenenyl chloride two olefinic urethanes (214 and 217) underwent cyclization to afford piperidine derivatives (215 and 218, respectively) having the cis stereochemistry. Their reduction with triphenyltin hydride gave the same product (216). Removal of the blocking group from the nitrogen gave ( )-isosolenopsin A (Ic) (Scheme 6) (392). [Pg.241]

Mori has reported the nickel-catalyzed cyclization/hydrosilylation of dienals to form protected alkenylcycloalk-anols." For example, reaction of 4-benzyloxymethyl-5,7-octadienal 48a and triethylsilane catalyzed by a 1 2 mixture of Ni(GOD)2 and PPhs in toluene at room temperature gave the silyloxycyclopentane 49a in 70% yield with exclusive formation of the m,//7 //i -diastereomer (Scheme 14). In a similar manner, the 6,8-nonadienal 48b underwent nickel-catalyzed reaction to form silyloxycyclohexane 49b in 71% yield with exclusive formation of the // /i ,// /i -diastereomer, and the 7,9-decadienal 48c underwent reaction to form silyloxycycloheptane 49c in 66% yield with undetermined stereochemistry (Scheme 14). On the basis of related stoichiometric experiments, Mori proposed a mechanism for the nickel-catalyzed cyclization/hydrosilylation of dienals involving initial insertion of the diene moiety into the Ni-H bond of a silylnickel hydride complex to form the (7r-allyl)nickel silyl complex li (Scheme 15). Intramolecular carbometallation followed by O-Si reductive elimination and H-Si oxidative addition would release the silyloxycycloalkane with regeneration of the active silylnickel hydride catalyst. [Pg.388]

Immediate sodium borohydride (NaBfLt) reduction gave lactam 44. Bischler-Napieralski cyclization of 44 followed by NaBfLt reduction yielded ( )-methyl-0-acetyl-isoreserpate (45). The correct stereochemistry at C-3 was obtained by first lactonizing compound 45 epimerization with pivalic acid then resulted in ( )-reserpic acid lactone (47). Treatment with base followed by acylation with TMBCI yielded racemic reserpine. The stereochemical considerations involved in the epimerization reaction will be discussed later. [Pg.18]

The titanium trichloride-diethylaluminum chloride catalyst converted butadiene to the cis-, trans,-trans-cyclododecatriene. Professor Wilke and co-workers found that the particular structure is influenced by coordination during cyclization between the transition metal and the growing diene molecules. Analysis of the influence of the ionicity of the catalyst shows effects on the oxidation and reduction of the alkyls and on the steric control in the polymerization. The lower valence of titanium is oxidized by one butadiene molecule to produce only a cis-butadienyl-titanium. Then the cationic chain propagation adds two trans-butadienyl units until the stereochemistry of the cis, trans, trans structure facilitates coupling on the dialkyl of the titanium and regeneration of the reduced state of titanium (Equation 14). [Pg.386]

A novel synthesis75 of, presumably, a hexahydro-l,5-naphthyridine (27) resulted as a by-product of the preparation of a dipyrrolenyl derivative by reductive cyclization of the ketone 26. The stereochemistry about the bridgehead carbon atoms was not established. [Pg.140]

The two products 6 and 7 are formed in a 1 1 mixture however, the stereochemistry of the side-chain is controlled effectively, so that after decomplexation and further manipulations both products can be applied in the synthesis of deoxycytochalasin. When pendant dienes were used instead of the allyl amide side-chain after the initial step of the formal [6 + 2]-Alder-ene reaction (Scheme 9.10), the intermediate 8 undergoes another reductive cyclization to the final polycyclic product 9 in quantitative yield as a single diastereomer, as reported by Pearson and Wang [22], The overall process can be seen as a formal [4 + 4]-cycloaddition reaction of the cyclohexadiene with the pendant diene. [Pg.249]


See other pages where Stereochemistry reductive cyclization is mentioned: [Pg.61]    [Pg.608]    [Pg.550]    [Pg.167]    [Pg.111]    [Pg.99]    [Pg.783]    [Pg.279]    [Pg.134]    [Pg.158]    [Pg.166]    [Pg.894]    [Pg.128]    [Pg.434]    [Pg.36]    [Pg.108]    [Pg.186]    [Pg.1459]    [Pg.264]    [Pg.78]    [Pg.14]    [Pg.274]    [Pg.402]    [Pg.24]    [Pg.587]    [Pg.405]    [Pg.791]    [Pg.792]    [Pg.823]    [Pg.1147]    [Pg.450]    [Pg.126]    [Pg.126]    [Pg.92]    [Pg.585]    [Pg.115]    [Pg.238]    [Pg.117]   
See also in sourсe #XX -- [ Pg.821 , Pg.822 ]




SEARCH



Cyclization stereochemistry

Cyclizations reductive

Cyclizations stereochemistry

© 2024 chempedia.info