Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cumyl hydroperoxide sulfide oxidation

An interesting behavior of the Padua reagent (Ti(0-i-Pr)4/(/ ,i )-DET = 1 4) was described by Scretti et al. [42,43], who used racemic furylhydroperoxides 1 instead of cumyl hydroperoxide as oxidant. The enantioselectivities in the oxidation of methyl aryl sulfides are very good. For example, methyl p-tolyl sulfoxide was obtained in 75% yield and >95% ee together with about 15% of sulfone by using hydroperoxide 1(R =OEt,R = /-PrandR3 = Me) Simultaneously there is a kinetic resolution of the racemic hydroperoxide takes place is used in excess (2 mol equiv. with respect to sulfide). Thus in the example mentioned above, the enantiopurity of the residual hydroperoxide was 81% ee. It has also been established that some kinetic resolution of... [Pg.333]

These reactions produce free radicals, as follows from the fact of consumption of free radical acceptor [42]. The oxidation of ethylbenzene in the presence of thiophenol is accompanied by CL induced by peroxyl radicals of ethylbenzene [43]. Dilauryl dithiopropionate induces the pro-oxidative effect in the oxidation of cumene in the presence of cumyl hydroperoxide [44] provided that the latter is added at a sufficiently high proportion ([sulfide]/[ROOH] > 2). By analogy with similar systems, it can be suggested that sulfide should react with ROOH both heterolytically (the major reaction) and homolytically producing free radicals. When dilauryl dithiopropionate reacts with cumyl hydroperoxide in chlorobenzene, the rate constants of these reactions (molecular m and homolytic i) in chlorobenzene are [42]... [Pg.602]

Of several procedures for the stereoselective oxidation of sulfides using organometallic complexes, two adaptations of Kagan s original process have gained prominence. In the first method the diol (36) is reacted with Ti(0 Pr)4 to form the catalyst. With cumyl hydroperoxide as the stoichiometric oxidant, methyl para-tolyl sulfide was converted into the optically active sulfoxide in 42 % yield (98 % ee)[109]. [Pg.27]

Enantiopure 2,2,5,5-tetramethyl-3,4-hexanediol was prepared by Yamanoi and Imamoto [46]. A combination of Ti(0-i-Pr)4 with this diol (1 2) gives a chiral catalyst for sulfide oxidation with cumyl hydroperoxide in the presence of 4A molecular sieves in toluene. At -20°C p-tolyl methyl sulfoxide (95% ee) was obtained in 42% yield together with 40% sulfone, A kinetic resolution increased, to some extent, the enantiomeric excess of the product, that is, at lower conversion (20% yield) the enantiopurity of the resulting sulfoxide was only 40% ee. This catalytic system is ineffective for the enantioselective oxidation of dialkyl sulfides. [Pg.335]

Catalytic oxidations of sulfides were carried out in 1,2-dichloroethane with cumyl hydroperoxide by using 10 mol % of the catalyst. The best enantioselectivity was achieved with complex 6c. However, sulfone was always produced as byproduct of the reaction. Even with a limited amount of hydroperoxide, the sulfone formation could not be avoided. For example, the reaction of methyl p-tolyl sulfide using 0.5 mol equiv. of cumyl hydroperoxide with respect to sulfide gave a 62 38 mixture of the corresponding (.S j-sulfoxide and sulfone. The reaction of benzyl phenyl sulfide led to the formation of (5)-sulfoxide (84% ee) and sulfone ([sulfox-ide]/[sulfone] = 77 23). It was established that sulfone was produced from the early stages of the reaction. It was also demonstrated that some kinetic resolution of the sulfoxide cooperated with the enantioselective oxidation of the sulfide. A unique feature of this oxidation system, as compared to those using various Ti(IV)/(DET) complexes, is the insensitivity of the enantioselectivity (40-60% ee at 0°C) to the nature of the alkyl group of sulfides Ar-S-alkyl. [Pg.336]


See other pages where Cumyl hydroperoxide sulfide oxidation is mentioned: [Pg.16]    [Pg.479]    [Pg.481]    [Pg.488]    [Pg.479]    [Pg.481]    [Pg.488]    [Pg.339]    [Pg.121]    [Pg.665]    [Pg.668]    [Pg.1264]    [Pg.110]    [Pg.321]    [Pg.265]    [Pg.435]    [Pg.1474]    [Pg.339]    [Pg.333]   
See also in sourсe #XX -- [ Pg.1097 ]




SEARCH



Cumyl

Hydroperoxides oxidation

Oxides sulfides

Sulfides oxidation

© 2024 chempedia.info