Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron correlation Configuration interaction Coupled-cluster

In order to have a more complete picture of the many-body problem for more general or complicated cases that DFT could help to treat, it is necessary to make a correspondence with the use of many-body perturbation theory. Under this wider classification of perturbation theory are included all the methods that treat electron correlation beyond the Hartree-Fock level, including configuration interaction, coupled cluster, etc. This perturbational approach has traditionally been known as second quantization, and its power for some applications can be seen when dealing with problems beyond the standard quantum mechanics. [Pg.387]

AMI Basis Sets Correlation Consistent Sets Complete Active Space Self-consistent Field (CASSCF) Second-order Perturbation Theory (CASPT2) Configuration Interaction Coupled-cluster Theory Density Functional Theory (DFT), Hartree-Fock (HF) and the Self-consistent Field Diradicals Electronic Wavefunctions Analysis G2 Theory M0ller-Plesset Perturbation Theory Natural Bond Orbital Methods Spin Contamination. [Pg.194]

Basis Sets Correlation Consistent Sets Configuration Interaction Coupled-cluster Theory Density Functional Applications Density Functional Theory Applications to Transition Metal Problems G2 Theory Integrals of Electron Repulsion Integrals Overlap Linear Scaling Methods for Electronic Structure Calculations Localized MO SCF Methods Mpller-Plesset Perturbation Theory Monte Carlo Quantum Methods for Electronic Structure Numerical Hartree-Fock Methods for Molecules Pseudospectral Methods in Ab Initio Quantum Chemistry Self-consistent Reaction Field Methods Symmetry in Hartree-Fock Theory. [Pg.688]

R ELECTRON CORRELATION METHODS 4.10 COUPLED CLUSTER, CONFIGURATION INTERACTION AND PERTURBATION THEORY 139 ... [Pg.77]

We now turn our attention to the first standard model that incorporates the effects of dynamical correlation the configuration-interaction (Cl) model. This model, which arises naturally in the MO picture as the superposition of determinants, has been quite successful in molecular electronic applications but has more recently been superseded by the coupled-cluster model as a computational tcx)l of quantum chemistry, at least in the more common areas of application. [Pg.181]

There are three main methods for calculating electron correlation Configuration Interaction (Cl), Many Body Perturbation Theory (MBPT) and Coupled Cluster (CC). A word of caution before we describe these methods in more details. The Slater determinants are composed of spin-MOs, but since the Hamilton operator is independent of spin, the spin dependence can be factored out. Furthermore, to facilitate notation, it is often assumed that the HF determinant is of the RHF type. Finally, many of the expressions below involve double summations over identical sets of functions. To ensure only the unique terms are included, one of the summation indices must be restricted. Alternatively, both indices can be allowed to run over all values, and the overcounting corrected by a factor of 1/2. Various combinations of these assumptions result in final expressions which differ by factors of 1 /2, 1/4 etc. from those given here. In the present book the MOs are always spin-MOs, and conversion of a restricted summation to an unrestricted is always noted explicitly. [Pg.101]

If we except the Density Functional Theory and Coupled Clusters treatments (see, for example, reference [1] and references therein), the Configuration Interaction (Cl) and the Many-Body-Perturbation-Theory (MBPT) [2] approaches are the most widely-used methods to deal with the correlation problem in computational chemistry. The MBPT approach based on an HF-SCF (Hartree-Fock Self-Consistent Field) single reference taking RHF (Restricted Hartree-Fock) [3] or UHF (Unrestricted Hartree-Fock ) orbitals [4-6] has been particularly developed, at various order of perturbation n, leading to the widespread MPw or UMPw treatments when a Moller-Plesset (MP) partition of the electronic Hamiltonian is considered [7]. The implementation of such methods in various codes and the large distribution of some of them as black boxes make the MPn theories a common way for the non-specialist to tentatively include, with more or less relevancy, correlation effects in the calculations. [Pg.39]

There is also a hierarchy of electron correlation procedures. The Hartree-Fock (HF) approximation neglects correlation of electrons with antiparallel spins. Increasing levels of accuracy of electron correlation treatment are achieved by Mpller-Plesset perturbation theory truncated at the second (MP2), third (MP3), or fourth (MP4) order. Further inclusion of electron correlation is achieved by methods such as quadratic configuration interaction with single, double, and (perturbatively calculated) triple excitations [QCISD(T)], and by the analogous coupled cluster theory [CCSD(T)] [8],... [Pg.162]

The electron correlation problem remains a central research area for quantum chemists, as its solution would provide the exact energies for arbitrary systems. Today there exist many procedures for calculating the electron correlation energy (/), none of which, unfortunately, is both robust and computationally inexpensive. Configuration interaction (Cl) methods provide a conceptually simple route to correlation energies and a full Cl calculation will provide exact energies but only at prohibitive computational cost as it scales factorially with the number of basis functions, N. Truncated Cl methods such as CISD (A cost) are more computationally feasible but can still only be used for small systems and are neither size consistent nor size extensive. Coupled cluster... [Pg.27]

In the last few years, the improvements in computer hardware and software have allowed the simulation of molecules and materials with an increasing number of atoms. However, the most accurate electronic structure methods based on N-particle wavefunctions, for example, the configuration interaction (Cl) method or the coupled-cluster (CC) method, are computationally too expensive to be applied to large systems. There is a great need for treatments of electron correlation that scale favorably with the number of electrons. [Pg.388]

In this paper, the main features of the two-step method are presented and PNC calculations are discussed, both those without accounting for correlation effects (PbF and HgF) and those in which electron correlations are taken into account by a combined method of the second-order perturbation theory (PT2) and configuration interaction (Cl), or PT2/CI [100] (for BaF and YbF), by the relativistic coupled cluster (RCC) method [101, 102] (for TIF, PbO, and HI+), and by the spin-orbit direct-CI method [103, 104, 105] (for PbO). In the ab initio calculations discussed here, the best accuracy of any current method has been attained for the hyperfine constants and P,T-odd parameters regarding the molecules containing heavy atoms. [Pg.264]

Results. Calculations were carried out at two internuclear separations, the equilibrium Re = 2.0844 A as in Ref. [89], and 2.1 A, for comparison with Ref. [127]. The relativistic coupled cluster (RCC) method [130, 131] with only single (RCC-S) or with single and double (RCC-SD) cluster amplitudes is used (for review of different coupled cluster approaches see also [132, 133] and references). The RCC-S calculations with the spin-dependent GRECP operator take into account effects of the spin-orbit interaction at the level of the one-configurational SCF-type method. The RCC-SD calculations include, in addition, the most important electron correlation effects. [Pg.275]

In ab initio methods the HER approximation is used for build-up of initial estimate for and which have to be further improved by methods of configurational interaction in the complete active space (CAS) [39], or by Mpller-Plesset perturbation theory (MPn) of order n, or by the coupled clusters [40,41] methods. In fact, any reasonable result within the ab initio QC requires at least minimal involvement of electron correlation. All the technical tricks invented to go beyond the HFR calculation scheme in terms of different forms of the trial wave function or various perturbative procedures represent in fact attempts to estimate somehow the second term of Eq. (5) - the cumulant % of the two-particle density matrix. [Pg.460]


See other pages where Electron correlation Configuration interaction Coupled-cluster is mentioned: [Pg.509]    [Pg.293]    [Pg.436]    [Pg.738]    [Pg.164]    [Pg.564]    [Pg.89]    [Pg.497]    [Pg.377]    [Pg.550]    [Pg.230]    [Pg.278]    [Pg.340]    [Pg.206]    [Pg.54]    [Pg.35]    [Pg.165]    [Pg.293]    [Pg.433]    [Pg.4]    [Pg.225]    [Pg.277]    [Pg.172]    [Pg.91]    [Pg.104]    [Pg.4]    [Pg.24]    [Pg.17]    [Pg.76]    [Pg.86]    [Pg.14]    [Pg.510]    [Pg.192]    [Pg.206]   


SEARCH



Cluster configuration

Cluster coupled

Cluster electronic configurations

Cluster interaction

Configuration Interaction

Configurational interaction

Correlated electrons

Correlation coupled-clusters

Correlation coupling

Correlation electron

Coupled interactions

Coupled-cluster theory, electron correlation configuration interaction calculations

Coupling configurations

Coupling interactions

Electron clusters

Electron configuration interaction

Electron correlation configuration interaction

Electron correlation interaction

Electron correlations interaction correlation

Electron coupled

Electron coupling

Electronic correlations

Electronic coupling

Electronic interactions

Interacting coupling

© 2024 chempedia.info