Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cores cylindrical

Core Cylindrical fixed bed of spherical fuel elements, spherical absorber elements and graphite spheres the effective diameter is 3.0 m the height is 3.0 m. Reflectors - molten salt coolant... [Pg.773]

Core Cylindrical, made up of 313 hexagonal fuel assemblies, equivalent diameter -3.16m, height of active part of the fuel assemblies -2.42 m... [Pg.289]

Core Cylindrical, made of hexagonal fuel assemblies (FA) with a pitch of 100 mm, effective diameter - 1.5-2 m, height of FA active part - 1.0 m, heterogeneous. Can be surrounded by side and end breeding screens. ... [Pg.583]

Core Cylindrical, arranged from hexagonal subassemblies without shrouds effective diameter is 4.24 m, active core height is 1.0 m. Surrounded by fertile side blankets (one row of subassemblies) and fertile axial blankets 100 mm thick... [Pg.618]

Similar to the case without consideration of the GP effect, the nuclear probability densities of Ai and A2 symmetries have threefold symmetry, while each component of E symmetry has twofold symmetry with respect to the line defined by (3 = 0. However, the nuclear probability density for the lowest E state has a higher symmetry, being cylindrical with an empty core. This is easyly understand since there is no potential barrier for pseudorotation in the upper sheet. Thus, the nuclear wave function can move freely all the way around the conical intersection. Note that the nuclear probability density vanishes at the conical intersection in the single-surface calculations as first noted by Mead [76] and generally proved by Varandas and Xu [77]. The nuclear probability density of the lowest state of Aj (A2) locates at regions where the lower sheet of the potential energy surface has A2 (Ai) symmetry in 5s. Note also that the Ai levels are raised up, and the A2 levels lowered down, while the order of the E levels has been altered by consideration of the GP effect. Such behavior is similar to that encountered for the trough states [11]. [Pg.598]

Fig. 3.7 Cross-section, parallel to the axis of a cylindrical pore of radius r , showing the inner core of radius i and the adsorbed film of thickness t. Fig. 3.7 Cross-section, parallel to the axis of a cylindrical pore of radius r , showing the inner core of radius i and the adsorbed film of thickness t.
In a cylindrical pore the meniscus will be spherical in form, so that the two radii of curvature are equal to one another and therefore to r (Equation (3.8)). From simple geometry (Fig. 3.8) the radius r of the core is related to r by the equation... [Pg.122]

Fig. 3.8 Relation between r of the Kelvin equation (Equation (3.20)) and the core radius r for a cylindrical pore with a hemispherical meniscus 6 is the angle of contact. Fig. 3.8 Relation between r of the Kelvin equation (Equation (3.20)) and the core radius r for a cylindrical pore with a hemispherical meniscus 6 is the angle of contact.
The variant of the cylindrical model which has played a prominent part in the development of the subject is the ink-bottle , composed of a cylindrical pore closed one end and with a narrow neck at the other (Fig. 3.12(a)). The course of events is different according as the core radius r of the body is greater or less than twice the core radius r of the neck. Nucleation to give a hemispherical meniscus, can occur at the base B at the relative pressure p/p°)i = exp( —2K/r ) but a meniscus originating in the neck is necessarily cylindrical so that its formation would need the pressure (P/P°)n = exp(-K/r ). If now r /r, < 2, (p/p ), is lower than p/p°)n, so that condensation will commence at the base B and will All the whole pore, neck as well as body, at the relative pressure exp( —2K/r ). Evaporation from the full pore will commence from the hemispherical meniscus in the neck at the relative pressure p/p°) = cxp(-2K/r ) and will continue till the core of the body is also empty, since the pressure is already lower than the equilibrium value (p/p°)i) for evaporation from the body. Thus the adsorption branch of the loop leads to values of the core radius of the body, and the desorption branch to values of the core radius of the neck. [Pg.128]

In order to allow for the thinning of the multilayer, it is necessary to assume a pore model so as to be able to apply a correction to Uj, etc., in turn for re-insertion into Equation (3.52). Unfortunately, with the cylindrical model the correction becomes increasingly complicated as desorption proceeds, since the wall area of each group of cores changes progressively as the multilayer thins down. With the slit model, on the other hand, <5/l for a... [Pg.148]

To convert the core area into the pore area ( = specific surface, if the external area is negligible) necessitates the use of a conversion factor R which is a function not only of the pore model but also of both r and t (cf. p. 148). Thus, successive increments of the area under the curve have to be corrected, each with its appropriate value of R. For the commonly used cylindrical model,... [Pg.171]

Vertica.1 Axia.1 Deposition. The vertical axial deposition (VAD) process (18) was developed by a consortium of Japanese cable manufacturers and Nippon Telephone and Telegraph (NTT). This process also forms a cylindrical soot form. However, deposition is achieved end-on without use of a mandrel and subsequent formation of a central hole. Both the core and cladding are deposited simultaneously using more than one torch (Fig. 12). [Pg.256]

The Los Alamos water boiler served as a prototype for the first university training reactor, started in September 1953 at North Carolina State College. The cylindrical reactor core used uranyl sulfate [1314-64-3] UO2SO4, and cooling water tubes wound inside the stainless steel container. A thick graphite reflector surrounded the core. [Pg.222]

Air-Suspension Coa.ting. The Wurster process utilizes a cylindrical chamber in which the cores are suspended in a controlled stream of air. Film coatings are appHed by introducing the coating solution into the airstream, where the solvent evaporates quickly. The process is much quicker than film coating however, care must be taken to avoid destmction of the cores by attrition in the air stream. [Pg.230]

The vessel design features a Chinese hat-like conical core stopper above the underflow sump, which is there to prevent the vortex from reaching the latter and reentraining the settled soHds. The core stopper is also beheved to stabilize and locate the vortex flow in the vessel. Overflow from the vessel is through a wide cylindrical insert through the Hd, similar to a vortex finder in a hydrocyclone (16), and an optional provision can be made for collecting any floatables in a float trap. [Pg.322]

A positive value iadicates vertical movement. Thea, moving from the outer wall to the air core, the axial velocity iacreases to positive values. Thus, the fluid motioa is dowa the wall of the cycloae to the apex and up the air core through the vortex finder. In the cylindrical section, the axial velocity goes negative again, approaching the vortex-finder wall. The fluid flow is then down the inner cyclone wall and the outer vortex-finder wall. There is a locus of zero axial velocity. [Pg.437]

Another matrix diffusional implant consists of an outer layer of micronized, crystalline 17P-estradiol dispersed in siUcone mbber over a nonmedicated, cylindrical siUcone mbber core. The system, implanted subcutaneously in the ears of cattie, releases estradiol for up to 400 days with kinetics to improve growth rate and feed efficiency (83). [Pg.144]

Most PET botties are produced by injection blow mol ding (71) the resin over a steel-core rod. The neck of the bottie is formed with the proper shape to receive closures and resin is provided around the temperature-conditioned rod for the blowing step. The rod with the resin is indexed to the mold, and the resin is blown away from the rod against the mold walls, where it cools to form the transparent bottie. The finished bottie is ejected and the rod is moved again to the injection-molding station. This process is favored for single cylindrical botties, but cannot be used for more complex shapes such as botties with handles. [Pg.268]

Figure 3.S Schematic diagram of packing side chains In the hydrophobic core of colled-coll structures according to the "knobs In holes" model. The positions of the side chains along the surface of the cylindrical a helix Is pro-jected onto a plane parallel with the heUcal axis for both a helices of the coiled-coil. (a) Projected positions of side chains in helix 1. (b) Projected positions of side chains in helix 2. (c) Superposition of (a) and (b) using the relative orientation of the helices In the coiled-coil structure. The side-chain positions of the first helix, the "knobs," superimpose between the side-chain positions In the second helix, the "holes." The green shading outlines a d-resldue (leucine) from helix 1 surrounded by four side chains from helix 2, and the brown shading outlines an a-resldue (usually hydrophobic) from helix 1 surrounded by four side chains from helix 2. Figure 3.S Schematic diagram of packing side chains In the hydrophobic core of colled-coll structures according to the "knobs In holes" model. The positions of the side chains along the surface of the cylindrical a helix Is pro-jected onto a plane parallel with the heUcal axis for both a helices of the coiled-coil. (a) Projected positions of side chains in helix 1. (b) Projected positions of side chains in helix 2. (c) Superposition of (a) and (b) using the relative orientation of the helices In the coiled-coil structure. The side-chain positions of the first helix, the "knobs," superimpose between the side-chain positions In the second helix, the "holes." The green shading outlines a d-resldue (leucine) from helix 1 surrounded by four side chains from helix 2, and the brown shading outlines an a-resldue (usually hydrophobic) from helix 1 surrounded by four side chains from helix 2.
The Arbeitsgemeinschaft Versuchsreaktor (AVR) and Thorium High-Temperature Reactor (THTR-300) were both helium-cooled reactors of the pebble-bed design [29,42,43]. The major design parameters of the AVR and THTR are shown in Table 10. Construction started on the AVR in 1961 and full power operation at 15MW(e) commenced in May 1967. The core of the AVR consisted of approximately 100,000 spherical pebble type fuel elements (see Section 5). The pebble bed was surrounded by a cylindrical graphite reflector and structural carbon... [Pg.450]


See other pages where Cores cylindrical is mentioned: [Pg.573]    [Pg.577]    [Pg.186]    [Pg.336]    [Pg.442]    [Pg.573]    [Pg.577]    [Pg.186]    [Pg.336]    [Pg.442]    [Pg.2587]    [Pg.2869]    [Pg.2870]    [Pg.131]    [Pg.132]    [Pg.197]    [Pg.258]    [Pg.258]    [Pg.405]    [Pg.313]    [Pg.192]    [Pg.314]    [Pg.384]    [Pg.401]    [Pg.214]    [Pg.236]    [Pg.230]    [Pg.512]    [Pg.194]    [Pg.330]    [Pg.86]    [Pg.450]    [Pg.452]    [Pg.453]    [Pg.475]    [Pg.1]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Amphiphilic and Double-Hydrophilic Core-Shell Cylindrical Brushes

Cylindrical core model

Cylindrical pore 111, core model

© 2024 chempedia.info