Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper complexes water exchange reactions

We can now make sensible guesses as to the order of rate constant for water replacement from coordination complexes of the metals tabulated. (With the formation of fused rings these relationships may no longer apply. Consider, for example, the slow reactions of metal ions with porphyrine derivatives (20) or with tetrasulfonated phthalocyanine, where the rate determining step in the incorporation of metal ion is the dissociation of the pyrrole N-H bond (164).) The reason for many earlier (mostly qualitative) observations on the behavior of complex ions can now be understood. The relative reaction rates of cations with the anion of thenoyltrifluoroacetone (113) and metal-aqua water exchange data from NMR studies (69) are much as expected. The rapid exchange of CN " with Hg(CN)4 2 or Zn(CN)4-2 or the very slow Hg(CN)+, Hg+2 isotopic exchange can be understood, when the dissociative rate constants are estimated. Reactions of the type M+a + L b = ML+(a "b) can be justifiably assumed rapid in the proposed mechanisms for the redox reactions of iron(III) with iodide (47) or thiosulfate (93) ions or when copper(II) reacts with cyanide ions (9). Finally relations between kinetic and thermodynamic parameters are shown by a variety of complex ions since the dissociation rate constant dominates the thermodynamic stability constant of the complex (127). A recently observed linear relation between the rate constant for dissociation of nickel complexes with a variety of pyridine bases and the acidity constant of the base arises from the constancy of the formation rate constant for these complexes (87). [Pg.58]

Copper(II) and zinc(II) are two of the more labile divalent metal ions and as a consequence the former is too labile for its water exchange rate to be determined by the NMR methods which utilize the paramagnetism of other divalent first-row transition metal ions, while the latter is diamagnetic and such NMR methods cannot be applied. However, it has been shown that water exchange rates and mechanisms can be deduced with reasonable reliability from simple ligand substitution studies, and this is one of the reasons for a recent variable-pressure spec-trophotometric SF study of the substitution of 2-chloro-l,10-phenanthroline on Cu(II) and Zn(II). The observed rate constants for the complexation reaction (kc) and the decomplexation reaction (k ) and their associated activation parameters for Cu(II) and Zn(II) are kc(298 K) = 1.1 x 10 and 1.1 x 10 dm mol" s", AH = 33.6 and 37.9 kJ mol", A5 = 3 and -2JK- mol", AV = 7.1 and 5.0 cm" mol", k 29S K) = 102 and 887 s", AH = 60.6 and 57.3 kJ mol", A5 = -3 and 4 J K" mol" and A V = 5.2 and 4.1 cm" mol". These data are consistent with the operation of an mechanism for the rate-determining first bond formation by 2-chloro-l,10-phenanthroline with the subsequent chelation step being faster [Eq. (18)]. For this mechanistic sequence (in which [M(H20)6 L-L] is an outer-sphere complex) it may be shown that the relationships in Eq. (19) apply. [Pg.199]

It has been concluded from a study of the optical and e.p.r. spectra of Co —Cu bovine superoxide dismutase, in which zinc has been replaced by cobalt, that the cobalt site reactivity should be described in terms of reaction of the Co-imidazolate-Cu system as a whole the crystal structure reported last year indicated that the metals were linked by a common histidine residue. There is an exchange interaction between the cobalt and copper however, this is abolished when the linking imidazole is protonated. Further evidence for the close proximity and interactive dependence of the zinc and copper binding sites was obtained from a study of the 4 Cu protein a two-fold enhancement of the activity of 2 Cu dismutase was observed upon occupation of the zinc sites by the Cu ". On the basis of C1 n.m.r. studies, Fee and Ward have suggested that one co-ordination position of Cu in superoxide dismutase is normally occupied by water they further suggest that superoxide can displace the solvent to form a cupric peroxide complex. [Pg.427]


See other pages where Copper complexes water exchange reactions is mentioned: [Pg.711]    [Pg.711]    [Pg.684]    [Pg.230]    [Pg.711]    [Pg.128]    [Pg.234]    [Pg.18]    [Pg.161]    [Pg.388]    [Pg.348]    [Pg.238]    [Pg.297]    [Pg.136]    [Pg.1034]    [Pg.259]    [Pg.490]    [Pg.5]    [Pg.248]    [Pg.155]    [Pg.210]    [Pg.122]    [Pg.221]    [Pg.195]    [Pg.478]    [Pg.86]    [Pg.248]    [Pg.104]    [Pg.71]    [Pg.214]    [Pg.680]    [Pg.683]    [Pg.807]    [Pg.234]    [Pg.413]    [Pg.367]    [Pg.152]    [Pg.73]    [Pg.807]    [Pg.508]    [Pg.460]    [Pg.180]    [Pg.369]   
See also in sourсe #XX -- [ Pg.771 ]




SEARCH



Copper water exchange

Water complexes

Water complexity

Water exchange

Water-exchange reactions

© 2024 chempedia.info