Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper-bismuth-selenium

Part 6. Copper-bismuth and copper-bismuth-selenium alloys (high-strength and leaded high-strength yellow brasses) ... [Pg.1083]

V. H. Aprahamian and D. G. Demopoulos, The Solution Chemistry and Solvent Extraction Behaviour of copper, iron, nickel, zinc, lead, tin, Ag, arsenic, antimony, bismuth, selenium and tellurium in Acid Chloride Solutions Reviewed from the Standpoint of PGM Refining, Mineral Processing and Extractive Metallurgy Review, Vol. 14, p. 143,1995. [Pg.579]

Selenium is extracted as diethyldithiocarbamate complex from the solution containing citrate and EDTA [5]. Ohta and Suzuki [6] found that only a few elements, such as copper, bismuth, arsenic, antimony, and tellurium, are also extracted together with selenium. They examined this for effects of hundredfold amounts of elements co-extracted with the selenium diethyldithiocarbamate complex. An appreciable improvement of interferences from diverse elements was observed in the presence of copper. Silver depressed the selenium absorption in the case of atomisation of diethyldithiocarbamate complex, but the interference of silver was suppressed in the presence of copper. The atomisation profile from diethyldithiocarbamate complex was identical with that from selenide. [Pg.119]

Thorium also forms inter-metallic compounds with iron, copper, aluminum, selenium, nickel, cobalt, manganese, bismuth, and many other metals at elevated temperatures. [Pg.930]

Occurrence, — Selenium must be considered a rare element, although it is found widely distributed in nature. The distinctive selenium minerals are rare, and they are usually selenides, of such metals as lead, mercury, copper, bismuth, and silver. The element is also found in the free state associated with sulfur and as a selenite. The most common occurrence of selenium is in ores in which the element has partially displaced sulfur. Generally the selenium is present in very small proportions, but on account of the fact that enormous quantities of sulfide ores are used, this represents a considerable amount of selenium. It occurs also in small amounts in meteoric iron, in volcanic lavas, and in certain deposits of coal. Traces of selenium have been detected in rain and snow. Even though present in mineral ores in mere traces, it is readily concentrated either in the flue dusts or in the anode mud of the electrolytic refineries. Considerable quantities are known to exist in Hawaii, Japan,... [Pg.311]

The element separates as black flocks. Since alkali stannites are without effect on the analogous selenium compounds, tellurium may be detected in the presence of selenium. Silver, mercury, copper, bismuth, and antimony salts are also reduced to the metal by stannites therefore it is advisable always to carry out the detection of tellurium in the sodium carbonate extract of the material to be tested. [Pg.470]

Betts Electrolytic Process. The Betts process starts with lead bullion, which may carry tin, silver, gold, bismuth, copper, antimony, arsenic, selenium, teUurium, and other impurities, but should contain at least 90% lead (6,7). If more than 0.01% tin is present, it is usually removed from the bullion first by means of a tin-drossing operation (see Tin AND TIN ALLOYS, detinning). The lead bullion is cast as plates or anodes, and numerous anodes are set in parallel in each electrolytic ceU. Between the anodes, thin sheets of pure lead are hung from conductor bars to form the cathodes. Several ceUs are connected in series. [Pg.123]

Although some changes occur in the melting furnace, cathode impurities are usually reflected directly in the final quaUty of electrorefined copper. It is commonly accepted that armealabiUty of copper is unfavorably affected by teUurium, selenium, bismuth, antimony, and arsenic, in decreasing order of adverse effect. Silver in cathodes represents a nonrecoverable loss of silver to the refiner. If the copper content of electrolyte is maintained at the normal level of 40—50 g/L, and the appropriate ratio of arsenic to antimony and bismuth (29) is present, these elements do not codeposit on the cathode. [Pg.203]

By-Product Recovery. The anode slime contains gold, silver, platinum, palladium, selenium, and teUurium. The sulfur, selenium, and teUurium in the slimes combine with copper and sUver to give precipitates (30). Some arsenic, antimony, and bismuth can also enter the slime, depending on the concentrations in the electrolyte. Other elements that may precipitate in the electrolytic ceUs are lead and tin, which form lead sulfate and Sn(0H)2S04. [Pg.203]

Of the elements commonly found in lead alloys, zinc and bismuth aggravate corrosion in most circumstances, while additions of copper, tellurium, antimony, nickel, silver, tin, arsenic and calcium may reduce corrosion resistance only slightly, or even improve it depending on the service conditions. Alloying elements that are of increasing importance are calcium especially in maintenance-free battery alloys and selenium, or sulphur combined with copper as nucleants in low antimony battery alloys. Other elements of interest are indium in anodesaluminium in batteries and selenium in chemical lead as a grain refiner ". [Pg.721]

Determination of copper as copper(I) thiocyanate Discussion. This is an excellent method, since most thiocyanates of other metals are soluble. Separation may thus be effected from bismuth, cadmium, arsenic, antimony, tin, iron, nickel, cobalt, manganese, and zinc. The addition of 2-3 g of tartaric acid is desirable for the prevention of hydrolysis when bismuth, antimony, or tin is present. Excessive amounts of ammonium salts or of the thiocyanate precipitant should be absent, as should also oxidising agents the solution should only be slightly acidic, since the solubility of the precipitate increases with decreasing pH. Lead, mercury, the precious metals, selenium, and tellurium interfere and contaminate the precipitate. [Pg.455]

Electrolytic copper refining Blister copper Process wastewater Slimes containing impurities such as gold, silver, antimony, arsenic, bismuth, iron, lead, nickel, selenium, sulfur, and zinc... [Pg.85]

No severe interference was noted in this method for arsenic, bismuth, calcium, copper, iron, magnesium, antimony, selenium, tin, and tellurium. [Pg.189]

Antimony, arsenic, bismuth, cadmium, calcium, cesium, chromium, cobalt, copper, gold, indium, iridium, iron, lead, lithium, magnesium, manganese, mercury, nickel, palladium, platinum, potassium, rhodium, rubidium, ruthenium, selenium, silver, sodium, tellurium, thallium, zinc... [Pg.250]

The radionuclides commercially available and most commonly used for a number of the foregoing applications include anhmony-125 banum-133, 207 bismuth-207 bromine-82 cadmium-109, 115 m calcium-45 carbon-14 cerium-141 cesium-134, 137 chlorine-36 chromium-51 cobalt-57, 58, 60 copper-64 gadolimum-153 germanium-68 gold-195. 198 hydrogen-3 (tritium) indium-111, 114 m iodine-125, 129, 131 iron-55, 59 krypton-85 manganese-54 mercury-203 molvbdenum-99 nickel-63 phosphorus-32. 33 potassium-42 promethium-147 rubidium-86 ruthenium-103 samarium-151 scandium-46 selenium-75 silver-110 m sodium-22, strontium-85 sulfur-35 technetium-99 thallium-204 thulium-171 tin-113, 119 m, 121 m. titamum-44 ytterbium-169, and zinc-65. [Pg.1410]


See other pages where Copper-bismuth-selenium is mentioned: [Pg.182]    [Pg.182]    [Pg.207]    [Pg.300]    [Pg.216]    [Pg.350]    [Pg.636]    [Pg.2850]    [Pg.48]    [Pg.55]    [Pg.132]    [Pg.220]    [Pg.383]    [Pg.211]    [Pg.211]    [Pg.211]    [Pg.221]    [Pg.6]    [Pg.39]    [Pg.45]    [Pg.717]    [Pg.305]    [Pg.361]    [Pg.674]    [Pg.220]    [Pg.383]    [Pg.119]    [Pg.27]    [Pg.1204]    [Pg.413]    [Pg.729]    [Pg.332]    [Pg.983]    [Pg.339]   
See also in sourсe #XX -- [ Pg.567 ]




SEARCH



Copper-bismuth

© 2024 chempedia.info