Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordination systems

Approach to restoring of stresses SD in the three-dimensional event requires for each pixel determinations of matrix with six independent elements. Type of matrixes depends on chosen coordinate systems. It is arised a question, how to present such result for operator that he shall be able to value stresses and their SD. One of the possible ways is a calculation and a presenting in the form of image of SD of stresses tensor invariants. For three-dimensional SDS relative increase of time of spreading of US waves, polarized in directions of main axises of stresses tensor ... [Pg.252]

T- and mapped to the image plane considering scaling (Si,Sy) of the coordinate axes and a shift Ci,Cy) of the center of the coordinate system. The distance between X-ray source and image intensifier tube is called /. [Pg.486]

With 3D-CTVicwer the export of slice-contours from parts inside the data volume is possible via the DXF-format. From these contours a two-dimensional comparison to the CAD geometry is possible if the coordinate system and the absolute scaling between both methods are well known. [Pg.495]

Use now this equation to describe liquid film flow in conical capillary. Let us pass to spherical coordinate system with the origin coinciding with conical channel s top (fig. 3). It means that instead of longitudinal coordinate z we shall use radial one r. Using (6) we can derive the total flow rate Q, multiplying specific flow rate by the length of cross section ... [Pg.617]

For the interaction between a nonlinear molecule and an atom, one can place the coordinate system at the centre of mass of the molecule so that the PES is a fiinction of tlie three spherical polar coordinates needed to specify the location of the atom. If the molecule is linear, V does not depend on <() and the PES is a fiinction of only two variables. In the general case of two nonlinear molecules, the interaction energy depends on the distance between the centres of mass, and five of the six Euler angles needed to specify the relative orientation of the molecular axes with respect to the global or space-fixed coordinate axes. [Pg.186]

Consider the case of two neutral, linear, dipolar molecules, such as HCN and KCl, in a coordinate system with its origin at the CM of molecule A and the z-axis aligned with the intemiolecular vector r pointing from the CM of A to the CM of B. The relative orientation of the two molecules is uniquely specified by their spherical polar angles 0, 03 and the difierence <]) = - <])3 between their azimuthal angles. The leading temi in the... [Pg.189]

We have expressed P in tenns of Jacobi coordinates as this is the coordmate system in which the vibrations and translations are separable. The separation does not occur in hyperspherical coordinates except at p = oq, so it is necessary to interrelate coordinate systems to complete the calculations. There are several approaches for doing this. One way is to project the hyperspherical solution onto Jacobi s before perfonning the asymptotic analysis, i.e. [Pg.977]

Here the ijk coordinate system represents the laboratory reference frame the primed coordinate system i j k corresponds to coordinates in the molecular system. The quantities Tj, are the matrices describing the coordinate transfomiation between the molecular and laboratory systems. In this relationship, we have neglected local-field effects and expressed the in a fomi equivalent to simnning the molecular response over all the molecules in a unit surface area (with surface density N. (For simplicity, we have omitted any contribution to not attributable to the dipolar response of the molecules. In many cases, however, it is important to measure and account for the background nonlinear response not arising from the dipolar contributions from the molecules of interest.) In equation B 1.5.44, we allow for a distribution of molecular orientations and have denoted by () the corresponding ensemble average ... [Pg.1290]

The effect of an MW pulse on the macroscopic magnetization can be described most easily using a coordinate system (x, y, z) which rotates with the frequency about tlie z-axis defined by the applied field B. [Pg.1573]

In a crossed-beam experiment the angular and velocity distributions are measured in the laboratory coordinate system, while scattering events are most conveniently described in a reference frame moving with the velocity of the centre-of-mass of the system. It is thus necessary to transfonn the measured velocity flux contour maps into the center-of-mass coordmate (CM) system [13]. Figure B2.3.2 illustrates the reagent and product velocities in the laboratory and CM coordinate systems. The CM coordinate system is travelling at the velocity c of the centre of mass... [Pg.2063]

Figure B2.3.2. Velocity vector diagram for a crossed-beam experiment, with a beam intersection angle of 90°. The laboratory velocities of the two reagent beams are and while the corresponding velocities in the centre-of-mass coordinate system are and U2, respectively. The laboratory and CM velocities for one of the products (assumed here to be in the plane of the reagent velocities) are denoted if and u, respectively. Figure B2.3.2. Velocity vector diagram for a crossed-beam experiment, with a beam intersection angle of 90°. The laboratory velocities of the two reagent beams are and while the corresponding velocities in the centre-of-mass coordinate system are and U2, respectively. The laboratory and CM velocities for one of the products (assumed here to be in the plane of the reagent velocities) are denoted if and u, respectively.
Equation (B2.3.10) shows that the scattered intensity observed in the laboratory is distorted from that hr the CM coordinate system. Those products which have a larger laboratory velocity or a smaller CM velocity will be observed in the laboratory with a greater intensity. [Pg.2065]

The conceptually simplest approach to solve for the -matrix elements is to require the wavefimction to have the fonn of equation (B3.4.4). supplemented by a bound function which vanishes in the asymptote [32, 33, 34 and 35] This approach is analogous to the fiill configuration-mteraction (Cl) expansion in electronic structure calculations, except that now one is expanding the nuclear wavefimction. While successfiti for intennediate size problems, the resulting matrices are not very sparse because of the use of multiple coordinate systems, so that this type of method is prohibitively expensive for diatom-diatom reactions at high energies. [Pg.2295]

The close-coupling approach works readily and simply if the reaction is purely melastic . The method can also be made to work very simply for a single product arrangement (as in collinear reactions), by using a twisted coordinate system, most conveniently reaction path coordinates [37, 38 and 39] as shown in figure B3.4.3. [Pg.2296]

The fimdamental disadvantage of the mean-field method is that it does not allow modes to respond in a correlated maimer to each other. This problem can be somewhat alleviated by a good definition of the relevant coordinate system [134. 136]. (An extension of mean-field methods that does allow for coupling [137. 138 and 139] will be discussed later.)... [Pg.2312]

Neuhauser D 1992 Reactive scattering with absorbing potentials in general coordinate systems Chem. [Pg.2326]

As noted above, the coordinate system is now recognized as being of fimdamental importance for efficient geometry optimization indeed, most of the major advances in this area in the last ten years or so have been due to a better choice of coordinates. This topic is seldom discussed in the mathematical literature, as it is in general not possible to choose simple and efficient new coordinates for an abstract optimization problem. A nonlmear molecule with N atoms and no... [Pg.2341]

This section deals with the transfonnation of coordinates and forces [U, 47] between different coordinate systems. In particular, we will consider the transfonnation between Cartesian coordinates, in which the geometry is ultimately specified and the forces are calculated, and internal coordmates which allow efficient optimization. [Pg.2345]

Let us consider tire energy expanded tlirough second order in two sets of displacement coordinates Ax and Aq. The two coordinate systems are related by... [Pg.2345]

If the two coordinate systems are coimected by a non-singnlar transfonnation then, defining A = (B ), the... [Pg.2346]

Wlien working with any coordinate system other than Cartesians, it is necessary to transfonn finite displacements between Cartesian and internal coordinates. Transfomiation from Cartesians to internals is seldom a problem as the latter are usually geometrically defined. However, to transfonn a geometry displacement from internal coordinates to Cartesians usually requires the solution of a system of coupled nonlinear equations. These can be solved by iterating the first-order step [47]... [Pg.2347]

Figure Cl.3.2. Coordinate systems used for intennolecular potential energy surfaces. (Taken from [60].)... Figure Cl.3.2. Coordinate systems used for intennolecular potential energy surfaces. (Taken from [60].)...
Electron transfer reaction rates can depend strongly on tire polarity or dielectric properties of tire solvent. This is because (a) a polar solvent serves to stabilize botli tire initial and final states, tluis altering tire driving force of tire ET reaction, and (b) in a reaction coordinate system where the distance between reactants and products (DA and... [Pg.2984]

Hence, the expression of Eq. (5) indicates that, in a polar coordinate system, Eq. (4) will remain unchanged even if the position of the conical intersection is shifted from the origin of the coordinate system. [Pg.46]

Reactive State-to-State Transition ftobabilides when Calculations are Performed by Shifting the Position of Conical Intersection from the Origin of the Coordinate System... [Pg.52]


See other pages where Coordination systems is mentioned: [Pg.313]    [Pg.894]    [Pg.900]    [Pg.144]    [Pg.188]    [Pg.669]    [Pg.678]    [Pg.1075]    [Pg.1191]    [Pg.1315]    [Pg.1573]    [Pg.1809]    [Pg.2063]    [Pg.2064]    [Pg.2065]    [Pg.2341]    [Pg.2341]    [Pg.2344]    [Pg.2345]    [Pg.2346]    [Pg.2353]    [Pg.2354]    [Pg.29]    [Pg.41]    [Pg.45]    [Pg.51]   


SEARCH



Coordinate system

© 2024 chempedia.info