Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free-disperse systems contact interactions

A Contact Interactions and the Stability of Free-Disperse Systems... [Pg.111]

The difference in the composition and structure of phases in contact, as well as the nature of the intermolecular interactions in the bulk of these phases, stipulates the presence of a peculiar unsaturated molecular force field at the interface. As a result, within the interfacial layer the density of such thermodynamic functions as free energy, internal energy and entropy is elevated in comparison with the bulk. The large interface present in disperse systems determines the very important role of the surface (interfacial) phenomena taking place in such systems. [Pg.1]

In order to describe the stability of fine disperse systems stabilized by diffuse ionic layers, one has to use the total free energy of interaction between particles, instead of the energy per unit film area, and compare the barrier height,, to the thermal energy, kT. For us to be able to use the solution derived for the case of plane-parallel surfaces, let us introduce some effective area of particle contact, Se[. Then the potential barrier height for the particles can be expressed as = A5 max St(. When diffuse part of electrical double... [Pg.551]

When a gas comes in contact with a solid surface, under suitable conditions of temperature and pressure, the concentration of the gas (the adsorbate) is always found to be greater near the surface (the adsorbent) than in the bulk of the gas phase. This process is known as adsorption. In all solids, the surface atoms are influenced by unbalanced attractive forces normal to the surface plane adsorption of gas molecules at the interface partially restores the balance of forces. Adsorption is spontaneous and is accompanied by a decrease in the free energy of the system. In the gas phase the adsorbate has three degrees of freedom in the adsorbed phase it has only two. This decrease in entropy means that the adsorption process is always exothermic. Adsorption may be either physical or chemical in nature. In the former, the process is dominated by molecular interaction forces, e.g., van der Waals and dispersion forces. The formation of the physically adsorbed layer is analogous to the condensation of a vapor into a liquid in fret, the heat of adsorption for this process is similar to that of liquefoction. [Pg.736]

Particles will still collide, but the frequency or the impact of the collisions can be minimised. What happens when the particles do come into close contact The encounters may lead to permanent contact of solid particles or to coalescence of liquid droplets. If they are allowed to continue unchecked, the colloidal system destroys itself through growth of the disperse phase and excessive creaming or sedimentation of the large particles. Whether these collisions result in permanent contact or whether the particles rebound and remain free depends on the forces of interaction, both attractive and repulsive, between the particles, and on the nature of the surface of the particles. [Pg.231]


See other pages where Free-disperse systems contact interactions is mentioned: [Pg.513]    [Pg.112]    [Pg.170]    [Pg.609]    [Pg.578]    [Pg.77]    [Pg.772]    [Pg.61]    [Pg.364]    [Pg.178]    [Pg.147]    [Pg.507]    [Pg.673]   


SEARCH



Contact interaction

Disperse systems

Dispersed systems

Dispersed systems, dispersions

Dispersion interaction

Dispersive contacting

Dispersive interactions

Dispersive interactions interaction

Dispersive systems

Free Systems

Free interaction

Interacting system

Interaction system

© 2024 chempedia.info