Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Confined nanoscopic domains

The effects of the intramicellar confinement of polar and amphiphilic species in nanoscopic domains dispersed in an apolar solvent on their physicochemical properties (electronic structure, density, dielectric constant, phase diagram, reactivity, etc.) have received considerable attention [51,52]. hi particular, the properties of water confined in reversed micelles have been widely investigated, since it simulates water hydrating enzymes or encapsulated in biological environments [13,23,53-59]. [Pg.478]

Furthermore, the absorbed cations could be chemically transformed while entrapped within the encapsulating PAMAM domains of these dendrimer-based networks, which served as confined nanoscopic reactors . For example, reactions of complexed Cu and Ni with H2S led to the formation of corresponding metal sulfides, while reduction of Ag and Au " yielded elemental metals encapsulated inside the dendrimer-network domains. [Pg.266]

Figure 1 shows the DSC cooling scan of iPP in the bulk after self-nucleation at a self-seeding temperature Ts of 162 °C (in domain II). The self-nucleation process provides a dramatic increase in the number of nuclei, such that bulk iPP now crystallizes at 136.2 °C after the self-nucleation process this means with an increase of 28 °C in its peak crystallization temperature. In order to produce an equivalent self-nucleation of the iPP component in the 80/20 PS/iPP blend a Ts of 161 °C had to be employed. After the treatment at Ts, the cooling from Ts shows clearly in Fig. 1 that almost every iPP droplet can now crystallize at much higher temperatures, i.e., at 134.5 °C. Even though the fractionated crystallization has disappeared after self-nucleation, it should also be noted that the crystallization temperature in the blend case is nearly 2 °C lower than when the iPP is in the bulk this indicates that when the polymer is in droplets the process of self-nucleation is slightly more difficult than when it is in the bulk. In the case of block copolymers when the crystallization is confined in nanoscopic spheres or cylinders it will be shown that self-nucleation is so difficult that domain II disappears. [Pg.26]

This chapter is organized as follows. In section 1.1, we introduce our notation and present the details of the molecular and mesoscale simulations the expanded ensemble-density of states Monte Carlo method,and the evolution equation for the tensor order parameter [5]. The results of both approaches are presented and compared in section 1.2 for the cases of one or two nanoscopic colloids immersed in a confined liquid crystal. Here the emphasis is on the calculation of the effective interaction (i.e. potential of mean force) for the nanoparticles, and also in assessing the agreement between the defect structures found by the two approaches. In section 1.3 we apply the mesoscopic theory to a model LC-based sensor and analyze the domain coarsening process by monitoring the equal-time correlation function for the tensor order parameter, as a function of the concentration of adsorbed nanocolloids. We present our conclusions in Section 1.4. [Pg.223]

The coexistence of hydrophilic and hydrophobic nano-domains separated in space, with a local order and fluidity typical of liquids, confer to supramolecular surfactant structures remarkable properties, which are advantageous in applications involving molecular confinement within nanoscopic regions and reactivity in micro-heterogeneous media. Micelle-mediated reactions constitute the basis of the so-called micellar catalysis [62, 116], admicellar catalysis [117] or admicellar polymerisation [118] in which reaction mechanisms may be controlled at a molecular level to save energy and raw materials, as well as to avoid lengthy post-reaction purification and analytical steps. [Pg.263]


See other pages where Confined nanoscopic domains is mentioned: [Pg.625]    [Pg.432]    [Pg.165]    [Pg.267]    [Pg.214]    [Pg.214]    [Pg.340]    [Pg.300]    [Pg.136]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Nanoscopic

© 2024 chempedia.info