Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexation agents, effect

The corrosion inhibitor can be a complexing agent that stops the metal redeposition reaction (reduction) by eliminating free metal ions from the solution. Theoretically, this would consecutively stop the associated oxidation reaction. Due to parasitic reduction reactions, however, the metal oxidation can continue, even enhanced by the complexing agent effect. [Pg.192]

They find that most of the complexing agents effectively separate the DNA and lower the inter duplex transfer rates. For spermine, a known DNA compacting agent the interduplex distances are actually reduced. Since tunnelling exponentially falls off with distance, Cai et al. show that tunnelling is a very... [Pg.271]

We can account for the effect of an auxiliary complexing agent, such as NH3, in the same way we accounted for the effect of pH. Before adding EDTA, a mass balance on Cd + requires that the total concentration of Cd +, Ccd, be... [Pg.316]

The work of Hyatt on cyclotriveratrylene—derived octopus molecules contrasts with this. Of course, these species have the advantage of ligand directionality absent in the benzene-derived octopus molecules. Except for the shortest-armed of the species (i.e., n = 1), all of the complexing agents (i.e., n = 2—4) were capable of complexing alkali metal cations. Synthesis of these species was accomplished as indicated below in Eq. (7.7). These variations of the original octopus molecules were also shown to catalyze the reaction between benzyl chloride and potassium acetate in acetonitrile solution and to effect the Wittig reaction between benzaldehyde and benzyltriphenylphos-phonium chloride. [Pg.315]

The formation of a single complex species rather than the stepwise production of such species will clearly simplify complexometric titrations and facilitate the detection of end points. Schwarzenbach2 realised that the acetate ion is able to form acetato complexes of low stability with nearly all polyvalent cations, and that if this property could be reinforced by the chelate effect, then much stronger complexes would be formed by most metal cations. He found that the aminopolycarboxylic acids are excellent complexing agents the most important of these is 1,2-diaminoethanetetra-aceticacid (ethylenediaminetetra-acetic acid). The formula (I) is preferred to (II), since it has been shown from measurements of the dissociation constants that two hydrogen atoms are probably held in the form of zwitterions. The values of pK are respectively pK, = 2.0, pK2 = 2.7,... [Pg.55]

In equation (q) only the fully ionised form of EDTA, i.e. the ion Y4 , has been taken into account, but at low pH values the species HY3, H2Y2, H3 Y and even undissociated H4Y may well be present in other words, only a part of the EDTA uncombined with metal may be present as Y4. Further, in equation (q) the metal ion M"+ is assumed to be uncomplexed, i.e. in aqueous solution it is simply present as the hydrated ion. If, however, the solution also contains substances other than EDTA which can complex with the metal ion, then the whole of this ion uncombined with EDTA may no longer be present as the simple hydrated ion. Thus, in practice, the stability of metal-EDTA complexes may be altered (a) by variation in pH and (b) by the presence of other complexing agents. The stability constant of the EDTA complex will then be different from the value recorded for a specified pH in pure aqueous solution the value recorded for the new conditions is termed the apparent or conditional stability constant. It is clearly necessary to examine the effect of these two factors in some detail. [Pg.59]

Complexation of Pu is discussed in terms of the relative stabilities of different oxidation states and the "effective" ionic charge of Pu0 and Pu02+2. An equation is proposed for calculating stability constants of Pu complexes and its correlation with experimental values demonstrated. The competition between inner v outer sphere complexation as affected by the oxidation state of Pu and the pKa of the ligand is reviewed. Two examples of uses of specific complexing agents for Pu indicate a useful direction for future studies. [Pg.214]

Fig. 15-11 Effects of strong complexation on metal ion toxicity, (a) Increasing concentration of NTA, a strong multi-dentate complexing agent, decreases the toxicity of Cd to grass shrimp. All systems have equal concentrations of total Cd. (b) When the results are replotted showing survival as a function of Cd concentration, the data for all concentrations of NTA collapse to a single curve. (Reprinted with permission from W. G. Sunda et al. (1978). Effect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonetes pugio importance of free cadmium ions. Environ. Sci. Technol. 12,409-413, American Chemical Society.)... Fig. 15-11 Effects of strong complexation on metal ion toxicity, (a) Increasing concentration of NTA, a strong multi-dentate complexing agent, decreases the toxicity of Cd to grass shrimp. All systems have equal concentrations of total Cd. (b) When the results are replotted showing survival as a function of Cd concentration, the data for all concentrations of NTA collapse to a single curve. (Reprinted with permission from W. G. Sunda et al. (1978). Effect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonetes pugio importance of free cadmium ions. Environ. Sci. Technol. 12,409-413, American Chemical Society.)...
Table 6. Free calcium concentrations in equilibrium with common complexing agents. A low free calcium concentration implies effective complexation, whether the complex formed is soluble or insoluble. The data were derived from either stability constants (soluble complexes) or solubility products (insoluble complexes). Table 6. Free calcium concentrations in equilibrium with common complexing agents. A low free calcium concentration implies effective complexation, whether the complex formed is soluble or insoluble. The data were derived from either stability constants (soluble complexes) or solubility products (insoluble complexes).

See other pages where Complexation agents, effect is mentioned: [Pg.87]    [Pg.449]    [Pg.526]    [Pg.59]    [Pg.258]    [Pg.87]    [Pg.449]    [Pg.526]    [Pg.59]    [Pg.258]    [Pg.1166]    [Pg.544]    [Pg.457]    [Pg.527]    [Pg.54]    [Pg.165]    [Pg.55]    [Pg.391]    [Pg.437]    [Pg.267]    [Pg.1231]    [Pg.60]    [Pg.323]    [Pg.166]    [Pg.189]    [Pg.515]    [Pg.9]    [Pg.331]    [Pg.337]    [Pg.66]    [Pg.388]    [Pg.388]    [Pg.394]    [Pg.414]    [Pg.877]    [Pg.219]    [Pg.106]    [Pg.194]    [Pg.284]    [Pg.253]   
See also in sourсe #XX -- [ Pg.118 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 , Pg.126 , Pg.127 , Pg.128 , Pg.129 , Pg.130 , Pg.131 ]




SEARCH



Agent Effects

Complexation agent

Complexation complexing agents

Complexing agent effect

© 2024 chempedia.info