Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Collision model polydisperse

The rest of this chapter is organized as follows. First, in Section 6.1, we consider the collision term for monodisperse hard-sphere collisions both for elastic and for inelastic particles. We introduce the kinetic closures due to Boltzmann (1872) and Enksog (1921) for the pair correlation function, and then derive the exact source terms for the velocity moments of arbitrary order and then for integer moments. Second, in Section 6.2, we consider the exact source terms for polydisperse hard-sphere collisions, deriving exact expressions for arbitrary and integer-order moments. Next, in Section 6.3, we consider simplified kinetic models for monodisperse and polydisperse systems that are derived from the exact collision source terms, and discuss their properties vis-d-vis the hard-sphere collision models. In Section 6.4, we discuss properties of the moment-transport equations derived from Eq. (6.1) with the hard-sphere collision models. Finally, in Section 6.5 we briefly describe how quadrature-based moment methods are applied to close the collision source terms for the velocity moments. [Pg.215]

According to this kinetic model the collision efficiency factor p can be evaluated from experimentally determined coagulation rate constants (Equation 2) when the transport parameters, KBT, rj are known (Equation 3). It has been shown recently that more complex rate laws, similarly corresponding to second order reactions, can be derived for the coagulation rate of polydisperse suspensions. When used to describe only the effects in the total number of particles of a heterodisperse suspension, Equations 2 and 3 are valid approximations (4). [Pg.111]

As in all mathematical descriptions of transport phenomena, the theory of polydisperse multiphase flows introduces a set of dimensionless numbers that are pertinent in describing the behavior of the flow. Depending on the complexity of the flow (e.g. variations in physical properties due to chemical reactions, collisions, etc.), the set of dimensionless numbers can be quite large. (Details on the physical models for momentum exchange are given in Chapter 5.) As will be described in detail in Chapter 4, a kinetic equation can be derived for the number-density function (NDF) of the velocity of the disperse phase n t, X, v). Also in this example, for clarity, we will assume that the problem has only one particle velocity component v and is one-dimensional in physical space with coordinate x at time t. Furthermore, we will assume that the NDF has been normalized (by multiplying it by the volume of a particle) such that the first three velocity moments are... [Pg.8]

Freret, L., Laurent, F, de Chaisemarun, S. et al. 2008 Turbulent combustion of polydisperse evaporating sprays with droplet crossing Eulerian modeling of collisions at finite Knudsen and validation, in Proceedings of the 2008 CTR Summer Program, Stanford (CA) Center for Turbulence Research, pp. 277-288. [Pg.466]


See other pages where Collision model polydisperse is mentioned: [Pg.214]    [Pg.215]    [Pg.544]    [Pg.113]    [Pg.151]    [Pg.783]    [Pg.14]    [Pg.246]    [Pg.220]    [Pg.221]    [Pg.38]   
See also in sourсe #XX -- [ Pg.236 , Pg.248 ]




SEARCH



Collision polydisperse

Polydisperse

Polydispersed

Polydispersion

Polydispersity

Polydispersiveness

Polydispersivity

© 2024 chempedia.info