Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt amine isomerization

Allylic amide isomerization, 117 Allylic amine isomerization ab initio calculations, 110 catalytic cycle, 104 cobalt-catalyzed, 98 double-bond migration, 104 isotope-labeling experiments, 103 kinetics, 103 mechanism, 103 model system, 110 NMR study, 104 rhodium-catalyzed, 9, 98 Allylnickel halides, 170 Allylpalladium intermediates, 193 Allylsilane protodesilylation, 305 Aluminum, chiral catalysts, 216, 234, 310 Amide dimers, NMR spectra, 282, 284 Amines ... [Pg.192]

The isomerization of an allylic amine to an enamine by means of a formal 1,3-hydrogen shift constitutes a relatively small structural change. However, this transformation could be extremely valuable if it could be rendered stereoselective. In important early studies, Otsuka and Tani showed that a chiral cobalt catalyst, prepared in situ from a Co(ii) salt, a chiral phosphine, and diisobutylaluminum hydride (Dibal-H), can bring about the conversion of certain pro-chiral olefins to chiral, isomeric olefins by double bond migra-... [Pg.348]

Both the rhodium and the cobalt complexes catalyze olefin isomerization as well as olefin hydroformylation. In the case of the rhodium(I) catalysts, the amount of isomerization decreases as the ligands are altered in the order CO > NR3 > S > PR3. When homogeneous and supported amine-rhodium complexes were compared, it was found that they both gave similar amounts of isomerization, whereas with the tertiary phosphine complexes the supported catalysts gave rather less olefin isomerization than their homogeneous counterparts (44, 45). [Pg.219]

The data in Table XXXV show that common features for these ammonia and amine complexes are very fast isomerization between the cis and trans isomers of the diaqua species and the fact that the trans diaqua isomers are generally more stable than the cis isomers. In the ammine system the activation parameters for k2 and k 2 are consistent with an isomerization process at cobalt(III), but it is at present not clear how this occurs. It need not be a simple cis-trans isomerization occurring at one of the Co(III) centers, but might involve the participation of both metal centers. The isomerization reaction may proceed via intramolecular proton transfer between a water ligand and one of the two hydroxo bridges with simultaneous bridge cleavage and formation... [Pg.146]

When either an alcohol or an amine function is present in the alkene, the possibility for lactone or lactam formation exists. Cobalt or rhodium catalysts convert 2,2-dimethyl-3-buten-l-ol to 2,3,3-trimethyl- y-butyrolactone, with minor amounts of the 8-lactone being formed (equation 51).2 In this case, isomerization of the double bond is not possible. The reaction of allyl alcohols catalyzed by cobalt or rhodium is carried out under reaction conditions that are severe, so isomerization to propanal occurs rapidly. Running the reaction in acetonitrile provides a 60% yield of lactone, while a rhodium carbonyl catalyst in the presence of an amine gives butane-1,4-diol in 60-70% (equation 52).8 A mild method of converting allyl and homoallyl alcohols to lactones utilizes the palladium chloride/copper chloride catalyst system (Table 6).79,82 83... [Pg.941]

The base (B) used was dicyclohexylethylamine. At the higher temperatures the isomeric products that one would expect from an isomerization of the acylcobalt carbonyls were formed (see Section II, A). Amines were also used in place of alcohols to give amides. Thus benzyl chloride reacted with carbon monoxide and aniline in tetrahydrofuran solution at 35° C in the presence of sodium cobalt carbonylate catalyst to give a 47% yield of phenylacetanilide. [Pg.158]

An enantiomerically pure aldehyde, (lR,2R,3R)-2,7,7-trimethylbicyclo[3.1.1]hep-tane-2-aldehyde, is produced from a-pinene by rhodium-catalyzed hydroformylation [79, 80]. Initially, reaction with ferrocene under acidic conditions leads to a 1 1 mixture of diastereoisomeric cations, but on standing for a few hours at room temperature, isomerization by rotation around the ferrocene — cationic carbon bond to the thermodynamically more stable cation (with configuration (R) at the cationic center) occurs (Fig. 4-11). An enantiomerically pure amine is available by trapping of this cation by azide and reduction [75]. Analogously, the isomeric aldehyde with the bicyclo [2.2.1] heptane structure is formed by hydroformylation of a-pinene with cobalt catalysts [79, 80] and was used as the starting material for an isomeric series of chiral amines [75]. [Pg.183]

Isophoronenitrile azine is quickly converted to partially hydrogenated azines (X3 and X4) during the first hour. The hydrogenation rate is faster with cobalt, that is confirmed by H2 consumption. Moreover we observed only one isomeric form of the intermediate diamine with Raney cobalt. As we previously described, we can see a different behaviour between these 2 intermediates. For one of them (at the present time we are unable to distinguish between cisoide and transoide) hydrogenation rate is low. Another characteristic of this process relates to IPDA isomeric composition. Usually by reductive amination of isophoronenitrile, the isomeric ratio cis/trans is about 80/20 but in our case the proportion of trans isomer increased considerably to reach a ratio of 50/50 to 44/56, depending on the nature of the catalyst (table 2). [Pg.326]


See other pages where Cobalt amine isomerization is mentioned: [Pg.118]    [Pg.688]    [Pg.313]    [Pg.240]    [Pg.110]    [Pg.156]    [Pg.80]    [Pg.87]    [Pg.75]    [Pg.264]    [Pg.82]    [Pg.803]    [Pg.240]    [Pg.58]    [Pg.254]    [Pg.24]    [Pg.198]    [Pg.467]    [Pg.467]    [Pg.235]    [Pg.411]    [Pg.400]    [Pg.82]    [Pg.288]    [Pg.344]    [Pg.882]    [Pg.73]    [Pg.239]    [Pg.248]    [Pg.98]    [Pg.101]    [Pg.881]    [Pg.39]    [Pg.213]    [Pg.482]    [Pg.482]    [Pg.2642]    [Pg.286]    [Pg.111]    [Pg.200]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Amines Isomerism

Cobalt amines

Cobalt isomerizations

© 2024 chempedia.info