Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Classical time-dependent approaches

COMPUTATIONAL SPECTROSCOPY BY CLASSICAL TIME-DEPENDENT APPROACHES... [Pg.517]

Finally, we like to mention that equivalent to the conventional energy frame KHD formulation, the time-dependent theory of Raman scattering is free from any approximations except the usual second order perturbation method used to derive the KHD expression. When applied to resonance and near resonance Raman scattering, the time-dependent formulation has shown advantages over the static KHD formulation. Apparently, the time-dependent formulation lends itselfs to an interpretation where localized wave packets follow classical-like paths. As an example of the numerical calculation of continuum resonance Raman spectra we show in Fig. 6.1-7 the simulation of the A, = 4 transitions (third overtone) of D excited with Aq = 488.0 nm. Both, the KHD (Eqs. 6.1-2 and 6.1-18) as well as the time-dependent approach (Eqs. 6.1-2 and 6.1-19) very nicely simulate the experimental spectrum which consists mainly of Q- and S-branch transitions (Ganz and Kiefer, 1993b). [Pg.481]

The time-dependent theory of spectroscopy bridges this gap. This approach has received less attention than the traditional time-independent view of spectroscopy, but since 1980, it has been very successfully applied to the field of coordination chemistry.The intrinsic time dependence of external perturbations, for example oscillating laser fields used in electronic spectroscopy, is also expKdtly treated by modern computational methods such as time-dependent density functional theory, a promising approach to the efficient calculation of electronic spectra and exdted-state structures not based on adjustable parameters, as described in Chapter 2.40. In contrast, the time-dependent theory of spectroscopy outlined in the following often relies on parameters obtained by adjusting a calculated spectrum to the experimental data. It provides a unified approach for several spectroscopic techniques and leads to intuitive physical pictures often qualitatively related to classical dynamics. The concepts at its core, time-dependent wave functions (wave packets) and autocorrelation functions, can be measured with femtosecond (fs) techniques, which often illustrate concepts very similar to those presented in the following for the analysis of steady-state spectra. The time-dependent approach therefore unifies spectroscopic... [Pg.559]

The MFT equation of motion (25) can be derived in many ways, including the WKB approximation, the eikonal method, a (semi)classical time-dependent self-consistent field ansatz, density-matrix approaches, and the classical limit of algebraic quantization. Depending on the specific approach used, slightly different MFT schemes may result. For example, the classical force can be described either by the average of the quantum force as in Eq. (25) or by the derivative of the average quantum potential. [Pg.640]

An alternative route is based on time-dependent approaches, where the standard statistical mechanics formalism relies on Fourier transform of the time correlation of vibrational operators [54—57]. These approaches can provide a complete description of the experimental spectrum, that is, the characterization of the real molecular motion consisting of many degrees of freedom activated at finite temperature, often strongly coupled and anharmonic in namre. However, computation of the exact quantum dynamics evolution of the nuclei on the ab initio potential surface is as prohibitive as the quantum/stationary-state approaches. In fact, even a semiclassical description of the time evolution of quanmm systems is usually computationally expensive. Therefore, time correlation methods for realistic systems are usually carried out by sampling of the nuclear motion in the classical phase space. In this context, summation over i in Eq. 11.1 is a classical ensemble average furthermore, the field unit vector e can be averaged over all directions of an isotropic fluid, leading to the well-known expression... [Pg.522]

In the adiabatic bend approximation (ABA) for the same reaction,18 the three radial coordinates are explicitly treated while an adiabatic approximation was used for the three angles. These reduced dimensional studies are dynamically approximate in nature, but nevertheless can provide important information characterizing polyatomic reactions, and they have been reviewed extensively by Clary,19 and Bowman and Schatz.20 However, quantitative determination of reaction probabilities, cross-sections and thermal reaction rates, and their relation to the internal states of the reactants would require explicit treatment of five or the full six degrees-of-freedom in these four-atom reactions, which TI methods could not handle. Other approximate quantum approaches such as the negative imaginary potential method16,21 and mixed classical and quantum time-dependent method have also been used.22... [Pg.412]

As in scattering theory in general, one can treat the role of V in either a time independent or a time dependent point of view. The latter is simpler if the perturbation V is either explicitly time dependent or can be approximated as such, say by replacing the approach motion during the collision by a classical path. Algebraic methods have been particularly useful in that context,2 where an important aspect is the description of a realistic level structure for H0. Figure 8.3 is a very recent application to electron-molecule scattering. [Pg.193]


See other pages where Classical time-dependent approaches is mentioned: [Pg.518]    [Pg.518]    [Pg.445]    [Pg.91]    [Pg.231]    [Pg.62]    [Pg.118]    [Pg.3]    [Pg.227]    [Pg.513]    [Pg.520]    [Pg.7]    [Pg.127]    [Pg.891]    [Pg.1063]    [Pg.2051]    [Pg.2249]    [Pg.2310]    [Pg.2315]    [Pg.44]    [Pg.75]    [Pg.17]    [Pg.365]    [Pg.369]    [Pg.370]    [Pg.373]    [Pg.375]    [Pg.429]    [Pg.470]    [Pg.53]    [Pg.389]    [Pg.67]    [Pg.319]    [Pg.35]    [Pg.226]    [Pg.429]    [Pg.289]    [Pg.504]    [Pg.148]    [Pg.179]    [Pg.3]    [Pg.2]   
See also in sourсe #XX -- [ Pg.507 , Pg.508 , Pg.509 ]




SEARCH



Classical time-dependent approaches electronic spectra

Classical time-dependent approaches initio dynamics

Time-dependent mixed quantum classical approaches

© 2024 chempedia.info