Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Classical electrodynamics vector field theory

When we come to examine the annals of classical hydrodynamics and electrodynamics, we find that the foundations of vector field theory have provided some key field structures whose role has repeatedly been acknowledged as instrumental in not only underpinning the structural edifice of classical continuum field physics, but in accounting for its empirical exhibits as well. [Pg.526]

In classical electrodynamics, the field equations for the Maxwell field A/( depend only on the antisymmetric tensor which is invariant under a gauge transformation A/l A/l + ticduxix), where x is an arbitrary scalar field in space-time. Thus the vector field A/( is not completely determined by the theory. It is customary to impose an auxiliary gauge condition, such as 9/x/Fx = 0, in order to simplify the field equations. In the presence of an externally determined electric current density 4-vector j11, the Maxwell Lagrangian density is... [Pg.189]

Although Beltrami fields have featured prominently in hydrodynamics for over a century, only until relatively recently have they received much attention in experimental and theoretical classical electrodynamics. The reason for the omission of this link in the standard development of electric/magnetic field theory can possibly be traced to a key related deficiency in the structure of vector... [Pg.531]

The accurate quantum mechanical first-principles description of all interactions within a transition-metal cluster represented as a collection of electrons and atomic nuclei is a prerequisite for understanding and predicting such properties. The standard semi-classical theory of the quantum mechanics of electrons and atomic nuclei interacting via electromagnetic waves, i.e., described by Maxwell electrodynamics, turns out to be the theory sufficient to describe all such interactions (21). In semi-classical theory, the motion of the elementary particles of chemistry, i.e., of electrons and nuclei, is described quantum mechanically, while their electromagnetic interactions are described by classical electric and magnetic fields, E and B, often represented in terms of the non-redundant four components of the 4-potential, namely the scalar potential and the vector potential A. [Pg.178]


See other pages where Classical electrodynamics vector field theory is mentioned: [Pg.562]    [Pg.83]    [Pg.103]    [Pg.125]    [Pg.103]    [Pg.173]    [Pg.106]   


SEARCH



Classical Field Theories

Classical electrodynamics

Classical theories

Electrodynamic theory

Electrodynamics vector field theory

Vector field

Vector fields electrodynamics

© 2024 chempedia.info