Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Circular ducts entry length

We have just discussed several variations of the flow in ducts, assuming that there are no axial variations. In fact there well may be axial variations, especially in the entry regions of a duct. Consider the situation illustrated in Fig. 4.8, where a square velocity profile enters a circular duct. After a certain hydrodynamic entry length, the flow must eventually come to the parabolic velocity profile specified by the Hagen-Poiseuille solution. [Pg.173]

Fig. 4.16 Illustration of the Graetz problem. A fully developed parabolic velocity profile is established in a circular duct and remains unchanged over the length of the duct. There is a sudden jump in the wall temperature, and the fluid temperature is initially uniform at the upstream wall temperature. The thermal-entry problem is to determine the behavior of the temperature profile as it changes to be uniform at the downstream wall temperature. Because the flow is incompressible, the velocity distribution does not depend on the varying temperatures. Fig. 4.16 Illustration of the Graetz problem. A fully developed parabolic velocity profile is established in a circular duct and remains unchanged over the length of the duct. There is a sudden jump in the wall temperature, and the fluid temperature is initially uniform at the upstream wall temperature. The thermal-entry problem is to determine the behavior of the temperature profile as it changes to be uniform at the downstream wall temperature. Because the flow is incompressible, the velocity distribution does not depend on the varying temperatures.
Consider the flow of an incompressible fluid in the entry region of a circular duct. Assuming the inlet velocity profile is flat, determine the length needed to achieve the parabolic Hagen-Poiseuille profile. Recast the momentum equation in nondimensional form, where the Reynolds number is based on channel diameter and inlet velocity emerges as a parameter. Based on solutions at different Reynolds numbers, develop a correlation for the entry length as a function of inlet Reynolds number. [Pg.330]

Shah, R.K., A Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular and Non-Circular Ducts ,Fluids Eng. Trans. ASME, Vol. 100, p. 177,1978. [Pg.226]

Turbulent Flow. The thermal entry length solutions for smooth ducts for several cross-sectional geometries have been summarized [46]. As for laminar flow, the Nusselt numbers in the thermal region are higher than those in the fully developed region. However, unlike laminar flow, Nu,x and NuxHi are very nearly the same for turbulent flow. The local and mean Nusselt numbers for a circular tube with and boundary conditions are [46] ... [Pg.1317]


See also in sourсe #XX -- [ Pg.5 , Pg.28 ]




SEARCH



Circular ducts

Ducting

Ducts

Entry length

© 2024 chempedia.info