Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride electron-donating

The phenylacetic acid derivative 469 is produced by the carbonylation of the aromatic aldehyde 468 having electron-donating groups[jl26]. The reaction proceeds at 110 C under 50-100 atm of CO with the catalytic system Pd-Ph3P-HCl. The reaction is explained by the successive dicarbonylation of the benzylic chlorides 470 and 471 formed in situ by the addition of HCl to aldehyde to form the malonate 472, followed by decarboxylation. As supporting evidence, mandelic acid is converted into phenylacetic acid under the same reaction conditions[327]. [Pg.192]

Acid anhydrides The carbonyl group of an acid anhydride is better stabilized by electron donation than the carbonyl group of an acyl chloride Even though oxygen... [Pg.834]

A tertiary carbonium ion is more stable than a secondary carbonium ion, which is in turn more stable than a primary carbonium ion. Therefore, the alkylation of ben2ene with isobutylene is much easier than is alkylation with ethylene. The reactivity of substituted aromatics for electrophilic substitution is affected by the inductive and resonance effects of a substituent. An electron-donating group, such as the hydroxyl and methyl groups, activates the alkylation and an electron-withdrawing group, such as chloride, deactivates it. [Pg.48]

There are large differences in reactivity among the various carboxylic acid derivatives, such as amides, esters, and acyl chlorides. One important factor is the resonance stabilization provided by the heteroatom. This decreases in the order N > O > Cl. Electron donation reduces the electrophilicity of the carbonyl group, and the corresponding stabilization is lost in the tetrahedral intermediate. [Pg.473]

Pyridine is more nucleophilic than an alcohol toward the carbonyl center of an acyl chloride. The product that results, an acylpyridinium ion, is, in turn, more reactive toward an alcohol than the original acyl chloride. The conditions required for nucleophilic catalysis therefore exist, and acylation of the alcohol by acyl chloride is faster in the presence of pyridine than in its absence. Among the evidence that supports this mechanism is spectroscopic observation of the acetylpyridinium ion. An even more effective catalyst is 4-dimeftiyIaminopyridine (DMAP), which functions in the same wsy but is more reactive because of the electron-donating dimethylamino substituent. ... [Pg.485]

When written in this way it is clear what is happening. The mechanisms of these reactions are probably similar, despite the different p values. The distinction is that in Reaction 10 the substituent X is on the substrate, its usual location but in Reaction 15 the substituent changes have been made on the reagent. Thus, electron-withdrawing substituents on the benzoyl chloride render the carbonyl carbon more positive and more susceptible to nucleophilic attack, whereas electron-donating substituents on the aniline increase the electron density on nitrogen, also facilitating nucleophilic attack. The mechanism may be an addition-elimination via a tetrahedral intermediate ... [Pg.331]

The initiator can be a radical, an acid, or a base. Historically, as we saw in Section 7.10, radical polymerization was the most common method because it can be carried out with practically any vinyl monomer. Acid-catalyzed (cationic) polymerization, by contrast, is effective only with vinyl monomers that contain an electron-donating group (EDG) capable of stabilizing the chain-carrying carbocation intermediate. Thus, isobutylene (2-methyl-propene) polymerizes rapidly under cationic conditions, but ethylene, vinyl chloride, and acrylonitrile do not. Isobutylene polymerization is carried out commercially at -80 °C, using BF3 and a small amount of water to generate BF3OH- H+ catalyst. The product is used in the manufacture of truck and bicycle inner tubes. [Pg.1207]

As shown in Table XIV, the reactivity of (trichloromethyl)silanes varied depending upon the substituent on silicon. The reactivity and yields of (trichloromethyl)-methyldichlorosilanes were slightly higher than those of (trichloroinethyl)tri-chlorosilanes in the aluminum chloride-catalyzed alkylation as similarly observed in the alkylations with (ai-chloroalkyl)silanes and (dichloroalkyl)silanes. The electron-donating methyl group on the silicon facilitates the alkylation more than the electron-withdrawing chlorine. The minor products, (diphenylmethyl)chloro-silanes, were presumably derived from the decomposition of (triphenylmethyl)-chlorosilanes. [Pg.173]

The above results show that the reactions of all organocobalt(III) complexes with Hg(II) ions so far reported share several features in common. The reaction proceeds by an Se2 mechanism and the rate is reduced [compared to that of the simple aquated Hg(II) ion with the methyl complex] by (1) complexing of the Hg(II), e.g., with chloride, (2) increased substitution on the a-carbon, and (3) reduced electron donation from the cis and/or trans ligands. [Pg.423]

In the preparation of iodides, but not bromides, PMHS may be substituted for the TMDO. Chlorides can be obtained if thionyl chloride and zinc iodide are added to suppress the formation of symmetrical ethers.314 An example of this type of reductive chlorination is shown by the TMDO-mediated conversion of p-tolualdehyde into p-methylbenzyl chloride (Eq. 201).313 To obtain chlorides from aldehydes having electron-withdrawing groups such as nitro or carbomethoxy, the initial reaction is first carried out at —70° and the mixture is then heated to reflux in order to reduce the formation of symmetrical ether by-products. Zinc chloride is substituted for zinc iodide for the synthesis of chlorides of substrates with electron-donating groups such as methoxy and hydroxy.314... [Pg.73]

The cycloaddition of nitrilimines toward furo[3,4-c]thieno[2,3-r7]-pyrazoles has been investigated as a function of the electron-withdrawing or electron-donating character of the substituents attached to the aromatic rings <2000H(53)917>. For instance, nitrilimine 459, obtained in situ from hydrazonoyl chloride 458, by base treatment with silver carbonate in dioxane, when reacted with 460, gives a mixture of compounds 461 and 63 (Scheme 53) <2000H(53)917>. [Pg.284]


See other pages where Chloride electron-donating is mentioned: [Pg.50]    [Pg.50]    [Pg.126]    [Pg.196]    [Pg.834]    [Pg.436]    [Pg.63]    [Pg.302]    [Pg.35]    [Pg.282]    [Pg.196]    [Pg.834]    [Pg.89]    [Pg.131]    [Pg.4]    [Pg.225]    [Pg.295]    [Pg.23]    [Pg.109]    [Pg.148]    [Pg.148]    [Pg.220]    [Pg.12]    [Pg.24]    [Pg.34]    [Pg.624]    [Pg.161]    [Pg.190]    [Pg.308]    [Pg.367]    [Pg.114]    [Pg.630]    [Pg.162]    [Pg.72]    [Pg.49]    [Pg.70]    [Pg.91]    [Pg.186]    [Pg.221]    [Pg.328]   
See also in sourсe #XX -- [ Pg.170 , Pg.172 ]




SEARCH



Electron donation

© 2024 chempedia.info