Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chirality, microstructural analysis

The mechanical properties of PLA rely on the stereochemistry of insertion of the lactide monomer into the PLA chain, and the process can be controlled by the catalyst used. Therefore, PLAs with desired microstructures (isotactic, heterotactic, and S3mdiotactic) can be derived from the rac- and W50-Iactide depending on the stereoselectivity of the metal catalysts in the course of the polymerization (Scheme 15) [66]. Fundamentally, two different polymerization mechanisms can be distinguished (1) chain-end control (depending on stereochemistry of the monomer), and (2) enantiomorphic site control (depending on chirality of the catalyst). In reality, stereocontrolled lactide polymerization can be achieved with a catalyst containing sterically encumbered active sites however, both chain-end and site control mechanisms may contribute to the overall stereocontrol [154]. Homonuclear decoupled NMR analysis is considered to be the most conclusive characterization technique to identify the PLA tacticity [155]. Homonuclear... [Pg.265]

The symmetry properties of cycloaliphatic polymers are such that polymers with certain microstructures, e.g. tram-isotactic poly (methylene-1,3-cyclopen-tane), are chiral therefore, the cyclopolymerisation of a, trans selective catalysts of C2 symmetry, such as methylaluminoxane-activated resolved (li )-(Thind CH2)2Zr l,l -bi-2-naphtholate, yielded optically active tram-isotactic poly(-methylene-1,3-cyclopentane). The cyclopolymerisation with the (15) enantiomer of the catalyst gave an enantiomeric polymer [505], On the basis of analysis of 13C NMR spectra, the degree of enantioface selectivity for this cyclopolymerisation was estimated to be of 91% [503,505]. [Pg.198]

The classical heterogeneously catalyzed propene polymerization as discovered hy Natta is a stereospecific reaction forming a polymer with isotactic microstructure. During the development of single-site polymerization catalysts it was found that C2-symmetric chiral metallocene complexes own the same stereospecificity. An analysis of the polymer microstructure hy means of NMR spectroscopy revealed that misinsertions are mostly corrected in the next insertion step, which suggests stereocontrol (Figure 6) hy the coordination site, as opposed to an inversion of stereospecificity hy control from the previous insertion steps (chain-end control). In addition, it was found that Cs-symmetric metallocene catalysts lead to syndio-tactic polymer since the Cosee-Arlmann chain flip mechanism induces an inversion of the stereospecificity at every insertion step. This type of polymer was inaccessible by classical heterogeneous systems. [Pg.717]

Considering each insertion as an independent event (which implies enantiomorphic site control, i.e., the chirality of the catalyst is the dominating factor for stereocontrol). Hart and Rappe then calculated the intensities for the mmmm pentad by multiplication of the individual probabilities. The calculated intensities were in excellent agreement with those from NMR data for a series of substituted ethylene-bridged, C2-symmetric zirconocenes. The use of this new and more quantitative approach to analysis of the relationship between the molecular structure of the catalyst and the polymer microstructure was, however, restricted to comparison of intensities for the mmmm pentad. Application to error pentads or prediction of pentad distributions for new or modified catalysts was not attempted. [Pg.297]


See other pages where Chirality, microstructural analysis is mentioned: [Pg.75]    [Pg.703]    [Pg.35]    [Pg.237]    [Pg.7217]    [Pg.7691]    [Pg.8]   
See also in sourсe #XX -- [ Pg.701 , Pg.702 ]




SEARCH



Analysis microstructural

© 2024 chempedia.info