Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemoenzymatic processes product isolation

Although initially prepared and evaluated as a racemate, the NMDA antagonist activity was likely to reside primarily in a single enantiomer. The stereoselective nature of the NDMA receptor is well established, albeit not completely understood. Consequently, several attempts have been undertaken to develop synthetic protocols that would allow preparation of optically active compounds. Early reports of preparation of optically active co-amino-o-carboxyalkylphosphonic acids describe the preparation of (.S )-A P-3 from an optically active amino nitrile prepared by reaction of diethyl 1-formylphosphonate with hydrogen cyanide and (5)-(-)-a-methylbenzylamine. Acid hydrolysis, enrichment of the diastereomers by fractional recrystaUization, and debenzylation lead to the isolation of (.S )-A P-3 in 86% enantiomeric excess. " Recently reported procedures, which use chemoenzymatic processes, offer a more convenient and mild approach for the production of optically pure aminophosphonic acids. Enzymatic hydrolysis of amides using penicillinacylase (EC... [Pg.242]

The asymmetric hydrolysis of (exo,exo)-7-oxabicyclo[2.2.1]heptane-2,3-dimethanol, diacetate ester (37) to the corresponding chiral monoacetate ester (38) (Fig. 12B) has been demonstrated with lipases [61]. Lipase PS-30 from P. cepacia was most effective in asymmetric hydrolysis to obtain the desired enantiomer of monoacetate ester. The reaction yield of 75 M% and e.e. of >99% were obtained when the reaction was conducted in a biphasic system with 10% toluene at 5 g/liter of the substrate. Lipase PS-30 was immobilized on Accurel PP and the immobilized enzyme was reused (5 cycles) without loss of enzyme activity, productivity, or e.e. of product (38). The reaction process was scaled up to 80 liters (400 g of substrate) and monoacetate ester (38) was isolated in 80 M% yield with 99.3% e.e. The product was isolated in 99.5% chemical purity. The chiral monoacetate ester (38) was oxidized to its corresponding aldehyde and subsequently hydrolyzed to give chiral lactol (33) (Fig. 12B). The chiral lactol (33) obtained by this enzymatic process was used in chemoenzymatic synthesis of thromboxane A2 antagonist (35). [Pg.156]


See other pages where Chemoenzymatic processes product isolation is mentioned: [Pg.69]    [Pg.24]    [Pg.13]    [Pg.101]    [Pg.237]    [Pg.450]    [Pg.346]    [Pg.1686]   
See also in sourсe #XX -- [ Pg.171 ]




SEARCH



Chemoenzymatic processes

Isolates products

Isolation process

Product isolation

© 2024 chempedia.info