Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Charge passive

From polarization curves the protectiveness of a passive film in a certain environment can be estimated from the passive current density in figure C2.8.4 which reflects the layer s resistance to ion transport tlirough the film, and chemical dissolution of the film. It is clear that a variety of factors can influence ion transport tlirough the film, such as the film s chemical composition, stmcture, number of grain boundaries and the extent of flaws and pores. The protectiveness and stability of passive films has, for instance, been based on percolation arguments [67, 681, stmctural arguments [69], ion/defect mobility [56, 57] and charge distribution [70, 71]. [Pg.2725]

The process of reabsorption depends on the HpophiHc—hydrophiHc balance of the molecule. Charged and ioni2ed molecules are reabsorbed slowly or not at all. Reabsorption of acidic and basic metaboHtes is pH-dependent, an important property in detoxification processes in dmg poisoning. Both passive and active carrier-mediated mechanisms contribute to tubular dmg reabsorption. The process of active tubular secretion handles a number of organic anions and cations, including uric acid, histamine, and choline. Dmg metaboHtes such as glucuronides and organic acids such as penicillin are handled by this process. [Pg.270]

Electrically assisted transdermal dmg deflvery, ie, electrotransport or iontophoresis, involves the three key transport processes of passive diffusion, electromigration, and electro osmosis. In passive diffusion, which plays a relatively small role in the transport of ionic compounds, the permeation rate of a compound is deterrnined by its diffusion coefficient and the concentration gradient. Electromigration is the transport of electrically charged ions in an electrical field, that is, the movement of anions and cations toward the anode and cathode, respectively. Electro osmosis is the volume flow of solvent through an electrically charged membrane or tissue in the presence of an appHed electrical field. As the solvent moves, it carries dissolved solutes. [Pg.145]

Ox and Red are general symbols for oxidation and reduction media respectively, and n and (n-z) indicate their numerical charge (see Section 2.2.2). Where there is no electrochemical redox reaction [Eq. (2-9)], the corrosion rate according to Eq. (2-4) is zero because of Eq. (2-8). This is roughly the case with passive metals whose surface films are electrical insulators (e.g., A1 and Ti). Equation (2-8) does not take into account the possibility of electrons being diverted through a conductor. In this case the equilibrium... [Pg.33]

Passive electrostatic A mechanical filter in which the medium is electrostatically charged without the aid of a continuous external power supply. [Pg.1441]

FIGURE 10.2 The passive diffusion of a charged species across a membrane depends upon the concentration and also on the charge of the particle, Z, and the electrical potential difference across the membrane, Ai/<. [Pg.298]

In other words, the negative charge is spontaneously attracted to the more positive potential—and AG is negative. In any case, if the sum of the two terms on the right side of Equation 10.2 is a negative number, transport of the ion in question from side 1 to side 2 would occur spontaneously. The driving force for passive transport is the AG term for the transported species itself. [Pg.298]

Both the galvanostatic and potentiostatic method have their own particular spheres of application, and it is not always advantageous to reject the former in favour of the latter, although there is an increasing tendency to do so. Nevertheless, the potentiostatic method does have a distinct advantage in studies of passivity, since it is capable of defining more precisely the potential and current density at which the transition from the active (charge transfer controlled M to the passive state takes place this is fax... [Pg.107]

Deterioration of electrode performance due to corrosion of electrode components is a critical problem. The susceptibility of MHt electrodes to corrosion is essentially determined by two factors surface passivation due to the presence of surface oxides or hydroxides, and the molar volume of hydrogen, VH, in the hydride phase. As pointed out by Willems and Buschow [40], VH is important since it governs alloy expansion and contraction during the charge-discharge cycle. Large volume changes... [Pg.217]

Electrode corrosion is the critical problem associated with the use of metal hydride anodes in batteries. The extent of corrosion is essentially determined by two factors alloy expansion and contraction in the charge-discharge cycle, and chemical surface passivation by the formation of corrosion—resistant oxides or hydroxides. [Pg.227]

Both factors are sensitive to alloy composition, which can be adjusted to produce electrodes having an acceptable cycle life. In AB5 alloys the effects of Ce, Co, Mn, and A1 upon cycle life in commercial AB5 -type electrodes are correlated with lattice expansion and charge capacity. Ce was shown to inhibit corrosion even though lattice expansion increases. Co and A1 also inhibit corrosion. XAS results indicate that Ce and Co inhibit corrosion though surface passivation. [Pg.228]

Since this is a new field, little has been published on the LiXC6 /electrolyte interface. However, there is much similarity between the SEIs on lithium and on LixC6 electrodes. The mechanism of formation of the passivation film at the interface between lithiated carbon and a liquid or polymer electrolyte was studied by AC impedance [128, 142]. Two semicircles observed in AC-impedance spectra of LiAsF6/EC-2Me-THF electrolytes at 0.8 V vs. Li/Li+ [142] were attributed to the formation of a surface film during the first charge cycle. However, in the cases of LiC104 or LiBF4 /EC-PC-DME (di-... [Pg.451]


See other pages where Charge passive is mentioned: [Pg.83]    [Pg.91]    [Pg.343]    [Pg.223]    [Pg.209]    [Pg.83]    [Pg.91]    [Pg.343]    [Pg.223]    [Pg.209]    [Pg.1944]    [Pg.422]    [Pg.470]    [Pg.328]    [Pg.328]    [Pg.393]    [Pg.2431]    [Pg.475]    [Pg.76]    [Pg.76]    [Pg.77]    [Pg.96]    [Pg.355]    [Pg.297]    [Pg.301]    [Pg.282]    [Pg.129]    [Pg.132]    [Pg.141]    [Pg.165]    [Pg.167]    [Pg.688]    [Pg.736]    [Pg.1043]    [Pg.1113]    [Pg.1189]    [Pg.239]    [Pg.143]    [Pg.383]    [Pg.393]    [Pg.440]    [Pg.449]    [Pg.449]   
See also in sourсe #XX -- [ Pg.362 ]




SEARCH



Electronic properties, passive layers charge transfer

Passivity electrochemical reduction charges

© 2024 chempedia.info