Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characteristics Stefan-Boltzmann constant

Phonon velocity is constant and is the speed of sound for acoustic phonons. The only temperature dependence comes from the heat capacity. Since at low temperature, photons and phonons behave very similarly, the energy density of phonons follows the Stefan-Boltzmann relation oT lvs, where o is the Stefan-Boltzmann constant for phonons. Hence, the heat capacity follows as C T3 since it is the temperature derivative of the energy density. However, this T3 behavior prevails only below the Debye temperature which is defined as 0B = h( DlkB. The Debye temperature is a fictitious temperature which is characteristic of the material since it involves the upper cutoff frequency ooD which is related to the chemical bond strength and the mass of the atoms. The temperature range below the Debye temperature can be thought as the quantum requirement for phonons, whereas above the Debye temperature the heat capacity follows the classical Dulong-Petit law, C = 3t)/cb [2,4] where T is the number density of atoms. The thermal conductivity well below the Debye temperature shows the T3 behavior and is often called the Casimir limit. [Pg.631]

Stefan-Boltzmann constant Lennard-Jones 6-12 parameter tortuosity factor characteristic of porous solid condensation coefficient collision integral... [Pg.60]

Design Methods for Calciners In indirect-heated calciners, heat transfer is primarily by radiation from the cyhnder wall to the solids bed. The thermal efficiency ranges from 30 to 65 percent. By utilization of the furnace exhaust gases for preheated combustion air, steam produc tion, or heat for other process steps, the thermal efficiency can be increased considerably. The limiting factors in heat transmission he in the conductivity and radiation constants of the shell metal and solids bed. If the characteristics of these are known, equipment may be accurately sized by employing the Stefan-Boltzmann radiation equation. Apparent heat-transfer coefficients will range from 17 J/(m s K) in low-temperature operations to 8.5 J/(m s K) in high-temperature processes. [Pg.1211]


See other pages where Characteristics Stefan-Boltzmann constant is mentioned: [Pg.413]    [Pg.448]   
See also in sourсe #XX -- [ Pg.305 ]




SEARCH



Boltzmann constant

Stefan

Stefan-Boltzmann

Stefan-Boltzmann constant

© 2024 chempedia.info