Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanism chain polymerization by cationic

CHAIN POLYMERIZATION BY CATIONIC MECHANISM 2.7.1 Mechanism and Kinetics... [Pg.60]

It might be noted that most (not all) alkenes are polymerizable by the chain mechanism involving free-radical intermediates, whereas the carbonyl group is generally not polymerized by the free-radical mechanism. Carbonyl groups and some carbon-carbon double bonds are polymerized by ionic mechanisms. Monomers display far more specificity where the ionic mechanism is involved than with the free-radical mechanism. For example, acrylamide will polymerize through an anionic intermediate but not a cationic one, A -vinyl pyrrolidones by cationic but not anionic intermediates, and halogenated olefins by neither ionic species. In all of these cases free-radical polymerization is possible. [Pg.349]

Cyclic Sulfides. The three-membered cyclic thiiranes can be polymerized cationically, anionically, or by a coordination mechanism. The four-membered cyclic thietanes can be polymerized by cationic and anionic mechanisms, but five-membered rings cannot be polymerized. Polymerization of propylenesulfide initiated with sodium naphthalene yields telechelics with naphthalene groups on both ends, if the living chain is terminated 1-chloromethylnaphthalene (321). [Pg.8226]

Other kinds of polymerizations such as those that involve opening rings can be initiated by cationic mechanisms. A variety of main chain polyethm such as poly tetrahydro-furan are made this way. Photogenanted acids can also be used to open oxirane rings, for example, and this is a very valuable method of jiioto-aoss-linking epoxy groups. [Pg.132]

Both modes of ionic polymerization are described by the same vocabulary as the corresponding steps in the free-radical mechanism for chain-growth polymerization. However, initiation, propagation, transfer, and termination are quite different than in the free-radical case and, in fact, different in many ways between anionic and cationic mechanisms. Our comments on the ionic mechanisms will touch many of the same points as the free-radical discussion, although in a far more abbreviated form. [Pg.404]

This conceptual link extends to surfaces that are not so obviously similar in stmcture to molecular species. For example, the early Ziegler catalysts for polymerization of propylene were a-TiCl. Today, supported Ti complexes are used instead (26,57). These catalysts are selective for stereospecific polymerization, giving high yields of isotactic polypropylene from propylene. The catalytic sites are beheved to be located at the edges of TiCl crystals. The surface stmctures have been inferred to incorporate anion vacancies that is, sites where CL ions are not present and where TL" ions are exposed (66). These cations exist in octahedral surroundings, The polymerization has been explained by a mechanism whereby the growing polymer chain and an adsorbed propylene bonded cis to it on the surface undergo an insertion reaction (67). In this respect, there is no essential difference between the explanation of the surface catalyzed polymerization and that catalyzed in solution. [Pg.175]

Analogous principles should apply to ionically propagated polymerizations. The terminus of the growing chain, whether cation or anion, can be expected to exhibit preferential addition to one or the other carbon of the vinyl group. Poly isobutylene, normally prepared by cationic polymerization, possesses the head-to-tail structure, as already mentioned. Polystyrenes prepared by cationic or anionic polymerization are not noticeably different from free-radical-poly-merized products of the same molecular weights, which fact indicates a similar chain structure irrespective of the method of synthesis. In the polymerization of 1,3-dienes, however, the structure and arrangement of the units depends markedly on the chain-propagating mechanism (see Sec. 2b). [Pg.237]

Hence, cation-radical copolymerization leads to the formation of a polymer having a lower molecular weight and polydispersity index than the polymer got by cation-radical polymerization— homocyclobutanation. Nevertheless, copolymerization occnrs nnder very mild conditions and is regio-and stereospecihc (Bauld et al. 1998a). This reaction appears to occnr by a step-growth mechanism, rather than the more efficient cation-radical chain mechanism proposed for poly(cyclobutanation). As the authors concluded, the apparent suppression of the chain mechanism is viewed as an inherent problem with the copolymerization format of cation-radical Diels-Alder polymerization. ... [Pg.361]

Strongly electrophilic or nucleophilic monomers will polymerize exclusively by anionic or cationic mechanisms. However, monomers that are neither strongly electrophilic nor nucleophilic generally polymerize by ionic and free radical processes. The contrast between anionic, cationic, and free radical methods of addition copolymerization is clearly illustrated by the results of copolymerization utilizing the three modes of initiation (Figure 7.1). Such results illustrate the variations of reactivities and copolymer composition that are possible from employing the different initiation modes. The free radical tie-line resides near the middle since free radical polymerizations are less dependent on the electronic nature of the comonomers relative to the ionic modes of chain propagation. [Pg.211]

The anionic polymerization of lactams proceeds by a mechanism analogous to the activated monomer mechanism for anionic polymerization of acrylamide (Sec. 5-7b) and some cationic polymerizations of epoxides (Sec. 7-2b-3-b). The propagating center is the cyclic amide linkage of the IV-acyllactam. Monomer does not add to the propagating chain it is the monomer anion (lactam anion), often referred to as activated monomer, which adds to the propagating chain [Szwarc, 1965, 1966]. The propagation rate depends on the concentrations of lactam anion and W-acy I lactam, both of which are determined by the concentrations of lactam and base. [Pg.575]

Polymerization reactions can proceed by various mechanisms, as mentioned earlier, and can be catalyzed by initiators of different kinds. For chain growth (addition) polymerization of single compounds, initiation of chains may occur via radical, cationic, anionic, or so-called coordinative-acting initiators, but some monomers will not polymerize by more than one mechanism. Both thermodynamic and kinetic factors can be important, depending on the structure of the monomer and its electronic and steric situation. The initial step generates... [Pg.157]

In all these cases and in contrast to starting a polymerization by initiators, there are no fragments of the starting molecule incorporated in the polymer chain. Consequently, the mechanisms are different to those of radical, anionic, or cationic polymerizations. [Pg.216]

Ethene does not polymerize by the cationic mechanism because it does not have sufficiently effective electron-donating groups to permit easy formation of the intermediate growing-chain cation. 2-Methylpropene has electron-donating alkyl groups and polymerizes much more easily than ethene by this type of mechanism. The usual catalysts for cationic polymerization of 2-methylpropene are sulfuric acid, hydrogen fluoride, or a complex of boron... [Pg.393]

Cationically catalyzed polymerizations28,72 have not received as much attention as the anionic variety. Typical cationic (acidic) catalysts in this case are Lewis acids. Yields and proportions of the various species are generally very similar to those obtained in anionic polymerizations, although the mechanism is very different. The reaction is thought to proceed through a tertiary oxonium ion formed by addition of a proton to one of the O atoms of the cyclic siloxane. Part of the mechanism may involve step growth, as well as the expected chain growth. [Pg.157]

For instance, in cases where the mechanism of the propagation of the polymer chain is by means of cationic polymerization, the rate increases with the polarity of the solvent. Thus, when the boron trifluoride-diethyl ether complex is used as the catalyst for styrene polymerization, then at 0°C the rate equation for a series of solvents takes the simple form of dependence on the solvent polarity (Heublein 1985) ... [Pg.371]

Some monomers are also polymerized by a cationic mechanism in a series of steps not too unlike those of anionic chain-growth. Initiators are often Lewis acids such as AICI3. The polymerization is not quite as straightforward as anionic, because for one thing cationic intermediates are subject to more side reactions. Common monomers that undergo cationic polymerization include styrene, isobutylene, and vinyl acetate. Some commercial products... [Pg.102]


See other pages where Mechanism chain polymerization by cationic is mentioned: [Pg.29]    [Pg.61]    [Pg.29]    [Pg.61]    [Pg.190]    [Pg.13]    [Pg.183]    [Pg.1917]    [Pg.47]    [Pg.424]    [Pg.869]    [Pg.46]    [Pg.662]    [Pg.200]    [Pg.10]    [Pg.45]    [Pg.199]    [Pg.195]    [Pg.112]    [Pg.130]    [Pg.49]    [Pg.597]    [Pg.78]    [Pg.76]    [Pg.393]    [Pg.78]    [Pg.192]   
See also in sourсe #XX -- [ Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 ]




SEARCH



Cation chain mechanism

Cation mechanism

Cationic chain polymerization

Cationic mechanism chain polymerization

Cationic polymerization

Cationic polymerization mechanism

Cationic polymerization polymerizations

Mechanism, chain polymerization

Polymeric chains mechanisms

Polymerization by Cationic Mechanism

© 2024 chempedia.info