Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catechols reduction

Enterobactin (ent), the cycHc triester of 2,3-dihydroxy-A/-benzoyl-l-serine, uses three catecholate dianions to coordinate iron. The iron(III)-enterobactin complex [62280-34-6] has extraordinary thermodynamic stabiUty. For Fe " +ent , the estimated formal stabiUty constant is 10 and the reduction potential is approximately —750 mV at pH 7 (23). Several catecholate-containing synthetic analogues of enterobactin have been investigated and found to have lesser, but still impressively large, formation constants. [Pg.443]

The close electrochemical relationship of the simple quinones, (2) and (3), with hydroquinone (1,4-benzenediol) (4) and catechol (1,2-benzenediol) (5), respectively, has proven useful in ways extending beyond their offering an attractive synthetic route. Photographic developers and dye syntheses often involve (4) or its derivatives (10). Biochemists have found much interest in the interaction of mercaptans and amino acids with various compounds related to (3). The reversible redox couple formed in many such examples and the frequendy observed quinonoid chemistry make it difficult to avoid a discussion of the aromatic reduction products of quinones (see Hydroquinone, resorcinol, and catechol). [Pg.403]

The original commercial source of E was extraction from bovine adrenal glands (5). This was replaced by a synthetic route for E and NE (Eig. 1) similar to the original pubHshed route of synthesis (6). Eriedel-Crafts acylation of catechol [120-80-9] with chloroacetyl chloride yields chloroacetocatechol [99-40-1]. Displacement of the chlorine by methylamine yields the methylamine derivative, adrenalone [99-45-6] which on catalytic reduction yields (+)-epinephrine [329-65-7]. Substitution of ammonia for methylamine in the sequence yields the amino derivative noradrenalone [499-61-6] which on reduction yields (+)-norepinephrine [138-65-8]. The racemic compounds were resolved with (+)-tartaric acid to give the physiologically active (—)-enantiomers. The commercial synthesis of E and related compounds has been reviewed (27). The synthetic route for L-3,4-dihydroxyphenylalanine [59-92-7] (l-DOPA) has been described (28). [Pg.355]

Condensation of piperazine with 2-methoxytropone gives the addition-elimination product 12 [2]. Alkylation of the remaining secondary amino group with bromoketone 13, itself the product from acylation of dimethyl catechol, gives aminoketone 14. Reduction of the carbonyl group with sodium borohydride leads to secondaiy alcohols 15 and 16. Resolution of these two enantiomers was achieved by recrystallization of their tartrate salts to give ciladopa (16) [3],... [Pg.22]

Azaloxan (12) is an antidepressant agent. Its synthesis can be accomplished starting with the reaction of catechol (7) and 3,4-dibromobutyronitrile (obtained by addition of bromine to the olefin) to give l,4-benzodioxan-2-ylacetonitrile (8). A series of functional group transformations ensues [hydrolysis to the acid (9), reduction to the alcohol (10) and conversion to a tosylate (11)] culminating in an SN-2 displacement reaction on tosylate 11 with l-(4-piperidinyl)-2-imidazolidi-none to give azaloxan (12) [3]. [Pg.138]

Fenoldopam (76) is an antihypertensive renal vasodilator apparently operating through the dopamine system. It is conceptually similar to trepipam. Fenoldopam is superior to dopamine itself because of its oral activity and selectivity for dopamine D-1 receptors (D-2 receptors are as.sociated with emesis). It is synthesized by reduction of 3,4-dimethoxyphenylacetonitrile (70) to dimethoxyphenethylamine (71). Attack of diis last on 4-methoxystyrene oxide (72) leads to the product of attack on the epoxide on the less hindered side (73). Ring closure with strong acid leads to substituted benzazepine 74. O-Dealkylation is accomplished with boron tribromide and the catechol moiety is oxidized to the ortho-quinone 75. Treatment with 9NHC1 results in conjugate (1,6) chloride addition and the formation of fenoldopam (76) [20,21]. [Pg.147]

Polypyrrole shows catalytic activity for the oxidation of ascorbic acid,221,222 catechols,221 and the quinone-hydroquinone couple 223 Polyaniline is active for the quinone-hydroquinone and Fe3+/Fe2+ couples,224,225 oxidation of hydrazine226 and formic acid,227 and reduction of nitric acid228 Poly(p-phenylene) is active for the oxidation of reduced nicotinamide adenine dinucleotide (NADH), catechol, ascorbic acid, acetaminophen, and p-aminophenol.229 Poly(3-methylthiophene) catalyzes the electrochemistry of a large number of neurotransmitters.230... [Pg.588]

Just as the synthesis of DA and NA is similar so is their metabolism. They are both substrates for monoamine oxidase (MAO) and catechol-O-methyl transferase (COMT). In the brain MAO is found in, or attached to, the membrane of the intraneuronal mitochondria. Thus it is only able to deaminate DA which has been taken up into nerve endings and blockade of DA uptake leads to a marked reduction in the level of its deaminated metabolites and in particular DOPAC. The final metabolite, homovanillic... [Pg.141]

In some cases enzymes can increase the rate of reaction by up to lO times. Carnell and Roberts (1997) have briefly discussed the scope of biotransformations that are used to make pharmaceuticals like penicillins, cephalosporines, erythromycin, lovastatin, cyclosporin, etc., and for food additives like citric acid, L-glutamate, and L-lysine. A very successful transformation by Zeneca has been that of benzene reduction, with Pseudomonase Putida, to dihydrocatechol and catechol the dihydro derivative is used to produce (+/-) pinitol. Fluorobenzene has been converted to fluorodihydrocatechol, an intermediate for pharmaceuticals. The highly stereo selective Bayer-Villeger reaction has been carried out with genetically engineered S-cerevisvae. Hydrolases have allowed enantioselective, and in some cases regioselective, hydrolysis of racemic esters. [Pg.157]

Alkynes are reactive toward hydroboration reagents. The most useful procedures involve addition of a disubstituted borane to the alkyne, which avoids complications that occur with borane and lead to polymeric structures. Catechol borane is a particularly useful reagent for hydroboration of alkynes.212 Protonolysis of the adduct with acetic acid results in reduction of the alkyne to the corresponding cw-alkene. Oxidative workup with hydrogen peroxide gives ketones via enol intermediates. [Pg.352]

The chemistry of most of the drugs in this family is quite simple, accounting in part for the very large number of analogues which have been made. The foundation for the chemistry in this series was laid long ago by Stolz in his classic synthesis of the ophthalmic agent adrenal one (3) in which he reacted catechol with chloroacetyl chloride and then displaced the reactive chlorine atom with methylamine to complete the synthesis. Borohydride reduction would have given epinephrine (adrenaline). [Pg.38]

Water that was deaerated by boiling was used, and an atmosphere of nitrogen essentially free from oxygen (such as the Seaford grade of the Air Reduction Company) was maintained, in order to prevent discoloration of the alkaline solution of catechol due to oxidation. [Pg.98]

The selective reduction of the D-ring olefin in 106 using a partially poisoned catalyst (Pd/C, 0.25 % pyridine) provided intermediate 107 (83 %), which was epimerized at -78 °C with sodium methoxide (HOAc quench at -78 °C, 89 %) (Scheme 10.9). Deoxygenation by means of tosyl hydrazone 108 and subsequent treatment with catechol borane and tetrabutylammonium acetate gave pentacyclic... [Pg.247]

As shown in Fig. 16.5a, no response of the enzyme electrode was observed in the absence of catechol and H202. The electrode displayed a low background current. When 1.0 mM catechol was added to PBS, the cyclic voltammogram showed a couple of oxidation and reduction peaks for catechol (curve (ii) in Fig. 16.5a). Upon addition of... [Pg.536]

A similar reducing system is created by combining dilithium catecholate and trichlorosilane at —78° in tetrahydrofuran. It is speculated that the relatively unstable pentacoordinate bis(l,2-benzenediolato)hydridosilicate (61) is formed in situ and that it is this species that can reduce aldehydes and ketones, but not esters, to alcohols when they are added to the reaction mixture at 0° (Eq. 168).93 In a like manner, the dilithium salt of 2,2/-dihydroxybiphenyl, which forms a pentacoordinate intermediate that is stable enough to react at room temperature, can also be used to promote the reduction reaction. The alkoxides of aliphatic diols... [Pg.61]

Chemoselectivity between aldehydes and ketones is demonstrated by this method in the competitive reduction of a mixture of pentanal and cyclohexanone. The ratios of primary and secondary alcohols are 75 25 when catechol is used at 0° and 79 21 when 2,2/-dihydroxybiphenyl is used at room temperature. These regents are not as chemoselective as other reducing agents such as LiAlH(OBu-i)3 (87 13) and LiAlH(OCEt3)3 (94 6) at 0°.93... [Pg.62]


See other pages where Catechols reduction is mentioned: [Pg.192]    [Pg.133]    [Pg.192]    [Pg.133]    [Pg.210]    [Pg.87]    [Pg.398]    [Pg.63]    [Pg.21]    [Pg.32]    [Pg.140]    [Pg.587]    [Pg.73]    [Pg.156]    [Pg.439]    [Pg.452]    [Pg.470]    [Pg.488]    [Pg.507]    [Pg.521]    [Pg.279]    [Pg.118]    [Pg.284]    [Pg.366]    [Pg.155]    [Pg.379]    [Pg.139]    [Pg.49]    [Pg.51]    [Pg.317]    [Pg.504]    [Pg.537]    [Pg.173]    [Pg.806]    [Pg.649]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Catechol

Catecholate

© 2024 chempedia.info