Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic matrix

A polyester-type fluorescent resin matrix (22) is made by heating trimellitic anhydride, propylene glycol, and phthaUc anhydride with catalytic amounts of sulfuric acid. Addition of Rhodamine BDC gives a bright bluish red fluorescent pigment soluble in DME and methanol. It has a softening point of 118°C. Exceptional heat resistance and color brilliance are claimed for products of this type, which are useful for coloring plastics. [Pg.301]

Succinyl-CoA derived from propionyl-CoA can enter the TCA cycle. Oxidation of succinate to oxaloacetate provides a substrate for glucose synthesis. Thus, although the acetate units produced in /3-oxidation cannot be utilized in glu-coneogenesis by animals, the occasional propionate produced from oxidation of odd-carbon fatty acids can be used for sugar synthesis. Alternatively, succinate introduced to the TCA cycle from odd-carbon fatty acid oxidation may be oxidized to COg. However, all of the 4-carbon intermediates in the TCA cycle are regenerated in the cycle and thus should be viewed as catalytic species. Net consumption of succinyl-CoA thus does not occur directly in the TCA cycle. Rather, the succinyl-CoA generated from /3-oxidation of odd-carbon fatty acids must be converted to pyruvate and then to acetyl-CoA (which is completely oxidized in the TCA cycle). To follow this latter route, succinyl-CoA entering the TCA cycle must be first converted to malate in the usual way, and then transported from the mitochondrial matrix to the cytosol, where it is oxida-... [Pg.793]

Gaylord et al. [49] reported the dilution and matrix effects in grafting of the styrene/AN binary mixture onto cellulose with K2S2O8 as the initiator. Titledman and coworkers [50] reported the effect of hydroxypro-pylmethyl cellulose on the course of (NH4)2S20 decomposition and claimed a route for grafting of vinyl monomers onto the polymer backbone. The decomposition of the peroxo salt, under the catalytic influence of the... [Pg.505]

The term matrix has different meanings to different people. For some, matrix refers to components of the catalyst other than the zeolite. For others, matrix is a component of the catalyst aside from the zeolite having catalytic activity. Yet for others, matrix refers to the catalyst binder. In this chapter, matrix means components of the catalyst other than zeolite and the term active matrix means the component of the catalyst other than zeolite heaving catalytic activity. [Pg.93]

The binder serves as a glue to hold the zeolite, matrix, and filler together. Binder may or may not have catalytic activity. The importance of the binder becomes more prominent with catalysts that contain high concentrations of zeolite. [Pg.95]

Hall et a/. pointed out that carburisation is controlled by three independent processes, i.e. carbon deposition, carbon ingress (through the protective scale) and carbon diffusion through the matrix. Carbon deposition usually occurs by decomposition of CH4 adsorbed on the surface or the catalytic decomposition of CO (Boudouard reaction). Hydrogen... [Pg.1077]

However, there are disadvantages to using immobilised cells. The cell may contain numerous catalytically active enzymes, which may catalyse unwanted side reactions. Also, the cell membrane itself may serve as a diffusion barrier, and may reduce productivity. The matrix may sharply reduce productivity if the microorganism is sensitive to product inhibition. One of the disadvantages of immobilised cell reactors is that the physiological state of the microorganism cannot be controlled. [Pg.202]

Figure 2. Mechanism of PDH. The three different subunits of the PDH complex in the mitochondrial matrix (E, pyruvate decarboxylase E2, dihydrolipoamide acyltrans-ferase Ej, dihydrolipoamide dehydrogenase) catalyze the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2. E, decarboxylates pyruvate and transfers the acetyl-group to lipoamide. Lipoamide is linked to the group of a lysine residue to E2 to form a flexible chain which rotates between the active sites of E, E2, and E3. E2 then transfers the acetyl-group from lipoamide to CoASH leaving the lipoamide in the reduced form. This in turn is oxidized by E3, which is an NAD-dependent (low potential) flavoprotein, completing the catalytic cycle. PDH activity is controlled in two ways by product inhibition by NADH and acetyl-CoA formed from pyruvate (or by P-oxidation), and by inactivation by phosphorylation of Ej by a specific ATP-de-pendent protein kinase associated with the complex, or activation by dephosphorylation by a specific phosphoprotein phosphatase. The phosphatase is activated by increases in the concentration of Ca in the matrix. The combination of insulin with its cell surface receptor activates PDH by activating the phosphatase by an unknown mechanism. Figure 2. Mechanism of PDH. The three different subunits of the PDH complex in the mitochondrial matrix (E, pyruvate decarboxylase E2, dihydrolipoamide acyltrans-ferase Ej, dihydrolipoamide dehydrogenase) catalyze the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2. E, decarboxylates pyruvate and transfers the acetyl-group to lipoamide. Lipoamide is linked to the group of a lysine residue to E2 to form a flexible chain which rotates between the active sites of E, E2, and E3. E2 then transfers the acetyl-group from lipoamide to CoASH leaving the lipoamide in the reduced form. This in turn is oxidized by E3, which is an NAD-dependent (low potential) flavoprotein, completing the catalytic cycle. PDH activity is controlled in two ways by product inhibition by NADH and acetyl-CoA formed from pyruvate (or by P-oxidation), and by inactivation by phosphorylation of Ej by a specific ATP-de-pendent protein kinase associated with the complex, or activation by dephosphorylation by a specific phosphoprotein phosphatase. The phosphatase is activated by increases in the concentration of Ca in the matrix. The combination of insulin with its cell surface receptor activates PDH by activating the phosphatase by an unknown mechanism.
Multivalent cations (Ca(II), Ce(III)) showed a higher activity than monovalent cations (Na, K). In toluene bromination (ref. 20) the catalytic activity of multivalent cations embedded in a zeolite matrix appeared to be higher than that of the corresponding metal chlorides. [Pg.210]

Bimetallic nanoparticles, either as alloys or as core-shell structures, exhibit unique electronic, optical and catalytic properties compared to pure metallic nanopartides [24]. Cu-Ag alloy nanoparticles were obtained through the simultaneous reduction of copper and silver ions again in aqueous starch matrix. The optical properties of these alloy nanopartides vary with their composition, which is seen from the digital photographs in Fig. 8. The formation of alloy was confirmed by single SP maxima which varied depending on the composition of the alloy. [Pg.131]

The simple catalyst embedding technique has been applied to ethylene polymcaization in slurry In this technique, active catalytic components are embedded into styrene polymer matrix. The resulting polyethylene shows better morphology and higher bulk density than those produced by homogeneous catalyst. No activity loss was also observed with the... [Pg.852]


See other pages where Catalytic matrix is mentioned: [Pg.245]    [Pg.258]    [Pg.267]    [Pg.933]    [Pg.1120]    [Pg.599]    [Pg.19]    [Pg.245]    [Pg.258]    [Pg.267]    [Pg.933]    [Pg.1120]    [Pg.599]    [Pg.19]    [Pg.457]    [Pg.50]    [Pg.179]    [Pg.197]    [Pg.210]    [Pg.370]    [Pg.41]    [Pg.488]    [Pg.494]    [Pg.503]    [Pg.66]    [Pg.487]    [Pg.353]    [Pg.745]    [Pg.745]    [Pg.877]    [Pg.114]    [Pg.130]    [Pg.130]    [Pg.80]    [Pg.170]    [Pg.183]    [Pg.185]    [Pg.120]    [Pg.45]    [Pg.662]    [Pg.605]    [Pg.95]    [Pg.297]    [Pg.313]    [Pg.178]    [Pg.314]    [Pg.315]   
See also in sourсe #XX -- [ Pg.245 ]




SEARCH



Fluid catalytic cracking matrices

© 2024 chempedia.info