Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction catalytic hydroformylation

Synthesis gas is also an important building block for aldehydes from olefins. The catalytic hydroformylation reaction (Oxo reaction) is used with many olefins to produce aldehydes and alcohols of commercial importance. [Pg.143]

An alternate bimetallic pathway was also suggested, but not favored, by Heck and Breslow (also shown in Scheme 1). The acyl intermediate could react with HCo(CO)4 to undergo intermolecular hydride transfer, followed by reductive elimination of aldehyde to produce the Co-Co bonded dimer Co2(CO)s. A common starting material for HCo(CO)4-catalyzed hydroformylation, Co2(CO)g is well-known to react with H2 under catalysis reaction conditions to form two equivalents of HCo(CO)4. The bimetallic hydride transfer mechanism is operational for stoichiometric hydroformylation with HCo(CO)4 and has been proposed to be a possibility for slower catalytic hydroformylation reactions with internal alkenes.The monometallic pathway involving reaction of the acyl intermediate with H2, however, has been... [Pg.659]

The volatile methylcobalt tetracarbonyl is thermally very unstable, m.p. —44°, and it decomposes at —35° [60]. It is readily oxidiz. The acylation reactions and the role of alkylcobalt carbonyl complexes in catalytic hydroformylation reactions are discussed on p. 334 and in chapter 9 respectively. [Pg.236]

Hydroformylation. Probably the best known catalytic carbonylation reaction is the hydroformylation, or 0x0 reaction, for producing aldehydes and alcohols from carbon monoxide, hydrogen, and olefins (eq. 9) (36). [Pg.51]

In 1996, consumption in the western world was 14.2 tonnes of rhodium and 3.8 tonnes of iridium. Unquestionably the main uses of rhodium (over 90%) are now catalytic, e.g. for the control of exhaust emissions in the car (automobile) industry and, in the form of phosphine complexes, in hydrogenation and hydroformylation reactions where it is frequently more efficient than the more commonly used cobalt catalysts. Iridium is used in the coating of anodes in chloralkali plant and as a catalyst in the production of acetic acid. It also finds small-scale applications in specialist hard alloys. [Pg.1115]

The catalytic hydroformylation of olefins is discussed in Chapter 5. The reaction of propylene with CO and H2 produces n-butyraldehyde as the main product. Isobutyraldehyde is a by-product °... [Pg.232]

The catalytic hydroformylation of alkenes has been extensively studied. The selective formation of linear versus branched aldehydes is of capital relevance, and this selectivity is influenced by many factors such as the configuration of the ligands in the metallic catalysts, i.e., its bite angle, flexibility, and electronic properties [152,153]. A series of phosphinous amide ligands have been developed for influencing the direction of approach of the substrate to the active catalyst and, therefore, on the selectivity of the reaction. The use of Rh(I) catalysts bearing the ligands in Scheme 34, that is the phosphinous amides 37 (R ... [Pg.95]

The catalytic cycle for hydroformylation reactions has also been established for certain homogeneous catalysts. Scheme 8.4 illustrates that for HRh(CO)2(PPh3)2, although the cycle is the same for the analogous cobalt catalyst. [Pg.161]

If one would be able to derive from the experimental data an accurate rate equation like (12) the number of terms in the denominator gives us the number of reactions involved in forward and backward direction that should be included in the scheme of reactions, including the reagents involved. The use of analytical expressions is limited to schemes of only two reaction steps. In a catalytic sequence usually more than two reactions occur. We can represent the kinetics by an analytical expression only, if a series of fast pre-equilibria occurs (as in the hydroformylation reaction, Chapter 9, or as in the Wacker reaction, Chapter 15) or else if the rate determining step occurs after the resting state of the catalyst, either immediately, or as the second one as shown in Figure 3.1. In the examples above we have seen that often the rate equation takes a simpler form and does not even show all substrates participating in the reaction. [Pg.68]

A key issue in the hydroformylation reaction is the ratio of linear and branched product being produced (Figure 7.1). Scientifically it is an interesting question how the linearity can be influenced and maximised by influencing the kinetics and changing the ligands. The catalytic cycle for the formation of linear aldehyde is shown in Figure 7.2. The first processes for... [Pg.126]

The use of catalytic SILP materials has been reviewed recently [10] covering Friedel-Crafts reactions [33-37], hydroformylations (Rh-catalyzed) [38], hydrogenation (Rh-catalyzed) [39,40], Heck reactions (Pd-catalyzed) [41], and hydroaminations (Rh-, Pd-, and Zn-catalyzed) [42]. Since then, the SILP concept has been extended to additional catalytic reactions and alternative support materials. In this paper we will present results from continuous, fixed-bed carbonylation and hydroformylation reactions using rhodium-based SILP catalysts as reaction examples demonstrating the advantages of the SILP technology for bulk chemical production. [Pg.151]

Rh, are the base of active catalysts for CO hydrogenation and the hydroformylation of olefins. The presence of several promoters modifies their catalytic behavior and synergic effects on the base-metal have been observed Table 8.5 illustrates several examples in which homonuclear or heteronuclear carbonyl compounds have been used in the preparation of Co- or Co-Rh-based catalysts for the CO hydrogenation and/or hydroformylation reactions. [Pg.331]

Metal chemical shifts have not found extensive use in relation to structural problems in catalysis. This is partially due to the relatively poor sensitivity of many (but not all) spin 1=1/2 metals. The most interesting exception concerns Pt, which is 33.7% abundant and possesses a relatively large magnetic moment. Platinum chemistry often serves as a model for the catalytically more useful palladium. Additionally, Pt NMR, has been used in connection with the hydrosilyla-tion and hydroformylation reactions. In the former area, Roy and Taylor [82] have prepared the catalysts Pt(SiCl2Me)2(l,5-COD) and [Pt()i-Cl)(SiCl2Me)(q -l,5-COD)]2 and used Pt methods (plus Si and NMR) to characterize these and related compounds. These represent the first stable alkene platinum silyl complexes and their reactions are thought to support the often-cited Chalk-Harrod hydrosilylation mechanism. [Pg.20]


See other pages where Reaction catalytic hydroformylation is mentioned: [Pg.283]    [Pg.283]    [Pg.234]    [Pg.237]    [Pg.284]    [Pg.250]    [Pg.162]    [Pg.294]    [Pg.74]    [Pg.151]    [Pg.154]    [Pg.155]    [Pg.159]    [Pg.165]    [Pg.169]    [Pg.51]    [Pg.57]    [Pg.152]    [Pg.413]    [Pg.172]    [Pg.384]    [Pg.122]    [Pg.49]    [Pg.69]    [Pg.71]    [Pg.144]    [Pg.145]    [Pg.162]    [Pg.138]    [Pg.65]    [Pg.333]    [Pg.339]    [Pg.124]    [Pg.356]    [Pg.187]   


SEARCH



Catalytic hydroformylation

Hydroformylation reaction

© 2024 chempedia.info