Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst coke factor

The presence of contaminant metals on the equiUbrium catalyst can significantly increase the catalyst coking tendency, which in turn results in an increase in regenerator temperature if all other factors remain unchanged. As one example, if the metals on an FCCU equiUbrium catalyst increased from an equivalent-nickel value of 2000 wt ppm to 3500 wt ppm, the catalyst coke factor would increase 30—50%. If all controllable parameters remained constant, the regenerator temperature would be expected to increase 35—50°C and conversion would drop. [Pg.215]

Coke Factor is coke-forming characteristics of the equilibrium catalyst relative to coke-forming characteristics of a standard catalyst at the same conversion. [Pg.358]

Several factors determine the deactivation of Ga/H-MFI(Si,Al) catalysts. Coke deposition is the major issue. [Pg.190]

Catalyst Deactivation by Coke Deposition. The catalyst employed in deep desulfurization of diesel fuel is deactivated by coke deposition onto the catalyst. Coke deposition affects not only the surface activity but also the diffusivity of the reactants, because the pore diameter is relatively small in this case. The catalyst deactivation data suggest that the effectiveness factor is smaller than 1.0. [Pg.421]

A formula for feed-stock coke factor (124), developed from correlated experimental data, indicates that at constant cracking conditions the concentration of carbon on spent catalyst increases with higher values... [Pg.392]

S Saim, B Subramaniam. Isomerization of 1-hexene over Pt/y-Al203 catalyst reaction mixture density and temperatue effects on catalyst effectiveness factor, coke laydown, and catalyst micromeritics. J Catal 131 445-456, 1991. [Pg.185]

C, 0.356—1.069 m H2/L (2000—6000 fU/bbl) of Hquid feed, and a space velocity (wt feed per wt catalyst) of 1—5 h. Operation of reformers at low pressure, high temperature, and low hydrogen recycle rates favors the kinetics and the thermodynamics for aromatics production and reduces operating costs. However, all three of these factors, which tend to increase coking, increase the deactivation rate of the catalyst therefore, operating conditions are a compromise. More detailed treatment of the catalysis and chemistry of catalytic reforming is available (33—35). Typical reformate compositions are shown in Table 6. [Pg.179]

The activity, coke, and gas factors are the tests that reflect the relative catalytic behavior of the catalyst. [Pg.104]

The CF and GF represent the coke- and gas-forming tendencies of an E-cat compared to a standard steam-aged catalyst sample at the same conversion. The CF and GF are influenced by the type of fresh catalyst and the level of metals deposited on the E-cat. Both the coke and gas factors can be indicative of the dehydrogenation activity of the metals on the catalyst. The addition of amorphous alumina to the catalyst will tend to increase the nonselective cracking, which forms coke and gas. [Pg.104]

Many factors influence delta coke, including quality of the FCC feedstock, design of the feed/catalyst injection system, riser design, operating conditions, and catalyst type. The following is a brief discussion of these factors ... [Pg.201]

Do not infer from the above discussion that all the catalyst in a fixed bed ages at the same rate. This is not usually true. Instead, the time-dependent effectiveness factor will vary from point to point in the reactor. The deactivation rate constant kj) will be a function of temperature. It is usually fit to an Arrhenius temperature dependence. For chemical deactivation by chemisorption or coking, deactivation will normally be much higher at the inlet to the bed. In extreme cases, a sharp deactivation front will travel down the bed. Behind the front, the catalyst is deactivated so that there is little or no conversion. At the front, the conversion rises sharply and becomes nearly complete over a short distance. The catalyst ahead of the front does nothing, but remains active, until the front advances to it. When the front reaches the end of the bed, the entire catalyst charge is regenerated or replaced. [Pg.371]

Early workers viewed carriers or catalyst supports as inert substances that provided a means of spreading out an expensive material like platinum or else improved the mechanical strength of an inherently weak material. The primary factors in the early selection of catalyst supports were their physical properties and their cheapness hence pumice, ground brick, charcoal, coke, and similar substances were used. No attention was paid to the possible influence of the support on catalyst behavior differences in behavior were attributed to variations in the distribution of the catalyst itself. [Pg.199]

There are several factors that may be invoked to explain the discrepancy between predicted and measured results, but the discrepancy highlights the necessity for good pilot plant scale data to properly design these types of reactors. Obviously, the reaction does not involve simple first-order kinetics or equimolal counterdiffusion. The fact that the catalyst activity varies significantly with time on-stream and some carbon deposition is observed indicates that perhaps the coke residues within the catalyst may have effects like those to be discussed in Section 12.3.3. Consult the original article for further discussion of the nonisothermal catalyst pellet problem. [Pg.463]

Parameters in the model are listed in Table I. The flow, structural, and boundary conditions are known quantities. The frequency factor and activation energy for coke burning were the values determined by Weisz and Goodwin (1966) from the experiments discussed earlier, and the catalyst diffusivity D was measured directly in the laboratory. The value of a was determined from direct observations of the CO/CO2 ratio in each zone of the operating kiln. The remaining parameters are known quantities. Thus, there are no adjustable parameters available to tune the fitting of predicted values to observed data, for the fraction of coke remaining and for the vertical temperature versus distance from the top of the kiln. [Pg.20]

Computed results from this model are compared to actual kiln performance in Table VI and the operating conditions taken from kiln samples are given in Table VII. There are no unit factors or adjustable parameters in this model. As with the explicit model, all kinetic data are determined from laboratory experiments. Values of the frequency factors and activation energies are given in Table VIII. Diffusivity values are also included. The amount of fast coke was determined from Eq. (49). With the exception of the T-B (5/12) survey, the agreement between observed and computed values of CO, CO2, and O2 is very good considering that there are no adjustable parameters used to fit the model to each kiln. In the kiln survey T-212/10, the CO conversion activity of the catalyst has been considerably deactivated and a different frequency factor was used in this simulation. [Pg.50]

The steam also reacts with coke deposits on the iron oxide catalyst, forming CO2, giving the catalyst a longer, more active lifetime. The onstream factor of the styrene plant is extended by reducing the shutdown frequency for catalyst regeneration or replacement. [Pg.127]

The impact of temperature on the rate of combustion is exponential. The rate increases by a factor of 2.4 going from 1200 to 1300°F. However, the rate increases by factor of 7.2 going from 1200 to 1400°F. The impact of carbon concentration on catalyst is also nonlinear. The relative amount of residence time required to decrease carbon concentration by 0.1% increases by a factor of 10 from an initial concentration of 1.0-0.15 wt%. The impact of oxygen partial pressure is linear. The unit feed rate will also inflnence coke burning kinetics. As feed is increased, the coke production will increase requiring more air for combustion. Since the bed level is constant, the air residence time in the bed will decrease causing the O2 concentration in the dilute phase to increase. This will lead to afterbum, which is defined as the combustion of CO to CO2 in the dilute phase or in the cyclones of the regenerator. [Pg.274]


See other pages where Catalyst coke factor is mentioned: [Pg.250]    [Pg.176]    [Pg.119]    [Pg.458]    [Pg.631]    [Pg.2037]    [Pg.174]    [Pg.211]    [Pg.214]    [Pg.216]    [Pg.224]    [Pg.40]    [Pg.69]    [Pg.118]    [Pg.369]    [Pg.370]    [Pg.193]    [Pg.613]    [Pg.277]    [Pg.272]    [Pg.59]    [Pg.217]    [Pg.50]    [Pg.130]    [Pg.404]    [Pg.206]    [Pg.201]    [Pg.289]    [Pg.73]    [Pg.29]    [Pg.35]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Catalyst factor)

Catalysts catalyst coking

Catalysts coke

Coked catalyst

© 2024 chempedia.info