Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl nucleophilic substitution

A classical reaction leading to 1,4-difunctional compounds is the nucleophilic substitution of the bromine of cf-bromo carbonyl compounds (a -synthons) with enolate type anions (d -synthons). Regio- and stereoselectivities, which can be achieved by an appropiate choice of the enol component, are similar to those described in the previous section. Just one example of a highly functionalized product (W.L. Meyer, 1963) is given. [Pg.63]

In general, the xanthenes are synthesized by the reaction of two moles of a nucleophilic / -substituted phenol (10) with an electrophilic carbonyl compound (11), the reaction occurring most readily with an acid catalyst at temperatures of 100—200°C. [Pg.399]

Monomer Reactivity. The poly(amic acid) groups are formed by nucleophilic substitution by an amino group at a carbonyl carbon of an anhydride group. Therefore, the electrophilicity of the dianhydride is expected to be one of the most important parameters used to determine the reaction rate. There is a close relationship between the reaction rates and the electron affinities, of dianhydrides (12). These were independendy deterrnined by polarography. Stmctures and electron affinities of various dianhydrides are shown in Table 1. [Pg.397]

The reaction involves nucleophilic substitution of for OR and addition of R MgX to the carbonyl group. With 1,4-dimagnesium compounds, esters are converted to cyclopentanols (40). Lactones react with Grignard reagents and give diols as products. [Pg.389]

The first three chapters discuss fundamental bonding theory, stereochemistry, and conformation, respectively. Chapter 4 discusses the means of study and description of reaction mechanisms. Chapter 9 focuses on aromaticity and aromatic stabilization and can be used at an earlier stage of a course if an instructor desires to do so. The other chapters discuss specific mechanistic types, including nucleophilic substitution, polar additions and eliminations, carbon acids and enolates, carbonyl chemistry, aromatic substitution, concerted reactions, free-radical reactions, and photochemistry. [Pg.830]

Imidazole with [Re(CO)3(phen)Cl] or [Re(CO)3(phen)(CF3S03)] in the presence of sulfuric acid gives [Re(CO)3(phen)(im)]2SO (95ICA(240)169). Imidazole with [Mri2(CO) g] gives [Mn2(CO)g(imH)] (84P707). This path involves the nucleophilic substitution of the carbonyl ligand. However, it is complicated by some redox... [Pg.126]

As with nucleophilic additions and nucleophilic acyl substitutions, many laboratory schemes, pharmaceutical syntheses, and biochemical pathways make frequent use of carbonyl cr-substitution reactions. Their great value is that they constitute one of the few general methods for forming carbon-carbon bonds, thereby making it possible to build larger molecules from smaller precursors. We ll see how and why these reactions occur in this chapter. [Pg.841]

Some nucleophilic substitutions at a carbonyl carbon are catalyzed by nucleophiles.There occur, in effect, two tetrahedral mechanisms ... [Pg.427]

In these reactions (12-41-12-44), a carbonyl group is attacked by a hydroxide ion (or amide ion) giving an intermediate that undergoes cleavage to a carboxylic acid (or an amide). With respect to the leaving group, this is nucleophilic substitution at a carbonyl group and the mechanism is the tetrahedral one discussed in Chapter 10. [Pg.812]

In the presence of a strong base, the ot carbon of a carboxylic ester can condense with the carbonyl carbon of an aldehyde or ketone to give a P-hydroxy ester, which may or may not be dehydrated to the a,P-unsaturated ester. This reaction is sometimes called the Claisen reaction,an unfortunate usage since that name is more firmly connected to 10-118. In a modem example of how the reaction is used, addition of tert-butyl acetate to LDA in hexane at -78°C gives the lithium salt of ferf-butyl acetate, " (12-21) an enolate anion. Subsequent reaction a ketone provides a simple rapid alternative to the Reformatsky reaction (16-31) as a means of preparing P-hydroxy erf-butyl esters. It is also possible for the a carbon of an aldehyde or ketone to add to the carbonyl carbon of a carboxylic ester, but this is a different reaction (10-119) involving nucleophilic substitution and not addition to a C=0 bond. It can, however, be a side reaction if the aldehyde or ketone has an a hydrogen. [Pg.1224]

Carbonyl reactions are extremely important in chemistry and biochemistry, yet they are often given short shrift in textbooks on physical organic chemistry, partly because the subject was historically developed by the study of nucleophilic substitution at saturated carbon, and partly because carbonyl reactions are often more difhcult to study. They are generally reversible under usual conditions and involve complicated multistep mechanisms and general acid/base catalysis. In thinking about carbonyl reactions, 1 find it helpful to consider the carbonyl group as a (very) stabilized carbenium ion, with an O substituent. Then one can immediately draw on everything one has learned about carbenium ion reactivity and see that the reactivity order for carbonyl compounds ... [Pg.4]

Chapters 1 and 2 dealt with formation of new carbon-carbon bonds by reactions in which one carbon acts as the nucleophile and another as the electrophile. In this chapter we turn our attention to noncarbon nucleophiles. Nucleophilic substitution is used in a variety of interconversions of functional groups. We discuss substitution at both sp3 carbon and carbonyl groups. Substitution at saturated carbon usually involves the Sjv2 mechanism, whereas substitution at carbonyl groups usually occurs by addition-elimination. [Pg.215]

The mechanistic aspects of nucleophilic substitutions at saturated carbon and carbonyl centers were considered in Part A, Chapters 4 and 7, respectively. In this chapter we discuss some of the important synthetic transformations that involve these types of... [Pg.215]

Nucleophilic substitution reactions, to which the aromatic rings are activated by the presence of the carbonyl groups, are commonly used in the elaboration of the anthraquinone nucleus, particularly for the introduction of hydroxy and amino groups. Commonly these substitution reactions are catalysed by either boric acid or by transition metal ions. As an example, amino and hydroxy groups may be introduced into the anthraquinone system by nucleophilic displacement of sulfonic acid groups. Another example of an industrially useful nucleophilic substitution is the reaction of l-amino-4-bromoanthraquinone-2-sulfonic acid (bromamine acid) (76) with aromatic amines, as shown in Scheme 4.5, to give a series of useful water-soluble blue dyes. The displacement of bromine in these reactions is catalysed markedly by the presence of copper(n) ions. [Pg.87]

In their elegant synthesis of (-i-)-hirsutene 6/1-261, Oppolzer and coworkers [126] combined an intramolecular Pd-catalyzed nucleophilic substitution of the allylcar-bonate 6/1-259 with carbonylation this is followed by an insertion of the formed carbonyl Pd-species into the double bond, obtained in the former reaction. The last step is a second carbonylation to give 6/1-260 after methylation of the formed acid moiety (Scheme 6/1.68). [Pg.401]

We have intentionally selected example reactions (Figs. 29-33) that would not usually be immediately obvious to a chemist. The examples chosen have all been concerned with rearrangements of various types, since their courses are frequently difficult to predict. It remains to emphasize that the reactivity functions contained in EROS perform perfectly well with other types of reaction. This is true, for example, with reactions that a chemist could derive directly from an analysis of the functional groups in a molecule. Thus, EROS predicts addition reactions to carbonyl compounds, nucleophilic substitutions, and condensation reactions, to name just a few examples. In all these reaction types, the possibility of assigning a quantitative estimate to the reactivity at the various sites via the reactivity functions is of particular merit. It... [Pg.69]

A diverse group of organic reactions catalyzed by montmorillonite has been described and some reviews on this subject have been published.19 Examples of those transformations include addition reactions, such as Michael addition of thiols to y./bunsatu rated carbonyl compounds 20 electrophilic aromatic substitutions,19c nucleophilic substitution of alcohols,21 acetal synthesis196 22 and deprotection,23 cyclizations,19b c isomerizations, and rearrangements.196 24... [Pg.33]

In reactions with azides, ketones are directly converted to 5-hydroxytriazolines. Ketone enolate 247, generated by treatment of norbornanone 246 with LDA at 0°C, adds readily to azides to provide hydroxytriazolines 248 in 67-93% yield. Interestingly, l-azido-3-iodopropane subjected to the reaction with enolate 247 gives tetracyclic triazoline derivative 251 in 94% yield. The reaction starts from an electrophilic attack of the azide on the ketone a-carbon atom. The following nucleophilic attack on the carbonyl group in intermediate 249 results in triazoline 250. The process is completed by nucleophilic substitution of the iodine atom to form the tetrahydrooxazine ring of product 251 (Scheme 35) <2004JOC1720>. [Pg.35]


See other pages where Carbonyl nucleophilic substitution is mentioned: [Pg.862]    [Pg.400]    [Pg.315]    [Pg.86]    [Pg.767]    [Pg.782]    [Pg.590]    [Pg.967]    [Pg.862]    [Pg.169]    [Pg.156]    [Pg.220]    [Pg.248]    [Pg.127]    [Pg.370]    [Pg.574]    [Pg.686]    [Pg.76]    [Pg.542]    [Pg.1173]    [Pg.1403]    [Pg.307]    [Pg.95]    [Pg.2]    [Pg.216]    [Pg.480]    [Pg.11]    [Pg.8]    [Pg.260]    [Pg.72]    [Pg.228]   


SEARCH



Carbonyl substitution

Carbonylation substitutive

Nucleophilic carbonylation

© 2024 chempedia.info