Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl groups processing

We said in A Preview ofCnrbonyl Compounds that much of the chemistry of carbonyl compounds can be explained by just four fundamental reaction types nucleophilic additions, nucleophilic acyl substitutions, o substitutions, and carbonyl condensations. Having studied the first two of these reactions in the past three chapters, let s now look in more detail at the third major carbonyl-group process—the a-substitution reaction. [Pg.841]

The mechanism of the reduction remains uncertain. The work of E. D. Williams, K. A. Krieger and A. R. Day (1953) using deuterium-labelled aluminium isopropoxide, shows that hydrogen atoms are transferred predominantly from the central carbon atom of an isopropoxide group to the carbon atom of the carbonyl group undergoing reduction, the process probably involving a cyclic complex ... [Pg.153]

With concentrated alkali, fission occurs at the position adjacent to the carbonyl group to give acetic acid and a mono-substituted acetic acid the process is termed acid hydrolysis. [Pg.475]

The rate of the Lewis-acid catalysed Diels-Alder reaction in water has been compared to that in other solvents. The results demonstrate that the expected beneficial effect of water on the Lewis-acid catalysed reaction is indeed present. However, the water-induced acceleration of the Lewis-add catalysed reaction is not as pronounced as the corresponding effect on the uncatalysed reaction. The two effects that underlie the beneficial influence of water on the uncatalysed Diels-Alder reaction, enforced hydrophobic interactions and enhanced hydrogen bonding of water to the carbonyl moiety of 1 in the activated complex, are likely to be diminished in the Lewis-acid catalysed process. Upon coordination of the Lewis-acid catalyst to the carbonyl group of the dienophile, the catalyst takes over from the hydrogen bonds an important part of the activating influence. Also the influence of enforced hydrophobic interactions is expected to be significantly reduced in the Lewis-acid catalysed Diels-Alder reaction. Obviously, the presence of the hydrophilic Lewis-acid diminished the nonpolar character of 1 in the initial state. [Pg.174]

IS a two step process m which the first step is rate determining In step 1 the nucleophilic hydroxide ion attacks the carbonyl group forming a bond to carbon An alkoxide ion is the product of step 1 This alkoxide ion abstracts a proton from water m step 2 yielding the gemmal diol The second step like all other proton transfers between oxygen that we have seen is fast... [Pg.716]

Now use the negatively charged a carbon of the enolate to form a new carbon-carbon bond to the carbonyl group Proton transfer from the solvent completes the process... [Pg.771]

In the first stage of the hydrolysis mechanism water undergoes nucleophilic addi tion to the carbonyl group to form a tetrahedral intermediate This stage of the process IS analogous to the hydration of aldehydes and ketones discussed m Section 17 6... [Pg.838]

The other process is a nucleophilic acyl substitution triggered by hydroxide attack at the carbonyl group... [Pg.854]

Compounds with active hydrogen add to the carbonyl group of acetone, often followed by the condensation of another molecule of the addend or loss of water. Hydrogen sulfide forms hexamethyl-l,3,5-trithiane probably through the transitory intermediate thioacetone which readily trimerizes. Hydrogen cyanide forms acetone cyanohydrin [75-86-5] (CH2)2C(OH)CN, which is further processed to methacrylates. Ammonia and hydrogen cyanide give (CH2)2C(NH2)CN [19355-69-2] ix.orn. 6<55i the widely used polymerization initiator, azobisisobutyronitrile [78-67-1] is made (4). [Pg.93]

Polycyclic Aromatic Carbonyl Dyes. StmcturaHy, these dyes contain one or more carbonyl groups linked by a quinonoid system. They tend to be relatively large molecules built up from smaller units, typically anthraquinones. Since they are appHed to the substrate (usually cellulose) by a vatting process, the polycycHc aromatic carbonyl dyes are often called the anthraquinonoid vat dyes. [Pg.279]

Scheme 4 shows in a general manner cyclocondensations considered to involve reaction mechanisms in which nucleophilic heteroatoms condense with electrophilic carbonyl groups in a 1,3-relationship to each other. The standard method of preparation of pyrazoles involves such condensations (see Chapter 4.04). With hydrazine itself the question of regiospecificity in the condensation does not occur. However, with a monosubstituted hydrazine such as methylhydrazine and 4,4-dimethoxybutan-2-one (105) two products were obtained the 1,3-dimethylpyrazole (106) and the 1,5-dimethylpyrazole (107). Although Scheme 4 represents this type of reaction as a relatively straightforward process, it is considerably more complex and an appreciable effort has been expended on its study (77BSF1163). Details of these reactions and the possible variations of the procedure may be found in Chapter 4.04. [Pg.121]

The initial bond formation between the -> ir excited carbonyl compound and an alkene can occur by interaction of the half-filled n -orbital of the [I CO] with the ir-system of the alkene, in a sense transferring a tt-electron to the -orbital and making a bond between an alkene carbon and the carbonyl oxygen. In this process (common for electron rich olefins) the plane formed by the alkene carbons and their four substituents is perpendicular to the plane of the carbonyl groups and its two substituents (Figure 1). In the... [Pg.39]


See other pages where Carbonyl groups processing is mentioned: [Pg.933]    [Pg.43]    [Pg.993]    [Pg.1361]    [Pg.1045]    [Pg.1025]    [Pg.644]    [Pg.902]    [Pg.962]    [Pg.933]    [Pg.43]    [Pg.993]    [Pg.1361]    [Pg.1045]    [Pg.1025]    [Pg.644]    [Pg.902]    [Pg.962]    [Pg.1445]    [Pg.2172]    [Pg.2]    [Pg.60]    [Pg.1147]    [Pg.282]    [Pg.329]    [Pg.477]    [Pg.141]    [Pg.451]    [Pg.124]    [Pg.396]    [Pg.399]    [Pg.153]    [Pg.344]    [Pg.343]    [Pg.350]    [Pg.176]    [Pg.348]    [Pg.391]    [Pg.129]    [Pg.36]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Carbonyl process

Carbonylation processes

Process groups

© 2024 chempedia.info