Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds electrophilic attack

The reactivity of organometals increases in the order Li < Na < K alkali metal organometals are more efficient than magnesium and aluminium compounds and the reaction of aryllithium organometals with ketones is more rapid than that of alkyllithium compounds [202], Wittig and Bub [204, 205] postulated the formation of transition complexes with simultaneous nucleophilic attack on the carbonyl and electrophilic attack on the oxygen by the metal. [Pg.120]

We have seen the dual functional capability of carbonyl compounds electrophilic at the carbonyl carbon, potentially nucleophilic at the adjacent a-carbon. In this section we introduce one of the most frequently employed carbon-carbon bond-forming strategies attack of an enolate ion at a carbonyl carbon. The product of this process is a jS-hydroxy carbonyl compound. Subsequent elimination of water may occur, leading to ,jS-unsaturated aldehydes and ketones. The next three sections describe these reactions in detail, and Real Life 18-1 illustrates them in a biological context. [Pg.800]

So far in this section we have combined enolate anions with other carbonyl compounds by direct attack at the carbonyl group. We can expand the scope of this reaction by using a,p-unsaturated carbonyl compounds as the electrophiles. This is the Michael reaction. Remind yourself of tliis by writing out the mechanism of a Michael reaction such as ... [Pg.35]

Electrophilic Reactions. Perfluoroepoxides are quite resistant to electrophilic attack. However, they react readily with Lewis acids, for example SbF, to give ring-opened carbonyl compounds (20—22) (eq. 2). [Pg.303]

Although the reaction of ketones and other carbonyl compounds with electrophiles such as bromine leads to substitution rather than addition, the mechanism of the reaction is closely related to electrophilic additions to alkenes. An enol, enolate, or enolate equivalent derived from the carbonyl compound is the nucleophile, and the electrophilic attack by the halogen is analogous to that on alkenes. The reaction is completed by restoration of the carbonyl bond, rather than by addition of a nucleophile. The acid- and base-catalyzed halogenation of ketones, which is discussed briefly in Section 6.4 of Part A, provide the most-studied examples of the reaction from a mechanistic perspective. [Pg.328]

Silyl enol ethers and silyl ketene acetals also offer both enhanced reactivity and a favorable termination step. Electrophilic attack is followed by desilylation to give an a-substituted carbonyl compound. The carbocations can be generated from tertiary chlorides and a Lewis acid, such as TiCl4. This reaction provides a method for introducing tertiary alkyl groups a to a carbonyl, a transformation that cannot be achieved by base-catalyzed alkylation because of the strong tendency for tertiary halides to undergo elimination. [Pg.863]

In a, P-unsaturated carbonyl compounds and related electron-deficient alkenes and alkynes, there exist two electrophilic sites and both are prone to be attacked by nucleophiles. However, the conjugated site is considerably softer compared with the unconjugated site, based on the Frontier Molecular Orbital analysis.27 Consequently, softer nucleophiles predominantly react with a, (i-unsaturated carbonyl compounds through conjugate addition (or Michael addition). Water is a hard solvent. This property of water has two significant implications for conjugate addition reactions (1) Such reactions can tolerate water since the nucleophiles and the electrophiles are softer whereas water is hard and (2) water will not compete with nucleophiles significantly in such... [Pg.317]

We would expect the C=0 linkage, by analogy with C=C (p. 178), to undergo addition reactions but whereas polar attack on the latter is normally initiated only by electrophiles, attack on the former— because of its bipolar nature—could be initiated either by electrophilic attack of X or X on oxygen or by nucleophilic attack of Y or Yt on carbon (radical-induced addition reactions of carbonyl compounds are rare). In practice, initial electrophilic attack on oxygen is of little significance except where the electrophile is an acid (or a Lewis acid), when rapid, reversible protonation may be a prelude to slow, rate-limiting attack by a nucleophile on carbon, to complete the addition, i.e. the addition is then acid-catalysed. [Pg.204]

These reactions were proposed to proceed via electrophilic attack on the enol by the SN reagents at N followed by cyclization either via a second enol as in compound 151 or by cyclization onto the more reactive carbonyl <1997J(P1)2831>. Unsymmetrical 1,3-diketones can give a mixture of regioisomers if both carbonyls have similar reactivities however, aroylacetones react regiospecifically to afford only the 3-aroyl-4-alkyl-l,2,5-thiadiazoles 154 (R = Me). [Pg.544]

A study of the reactions of butadiene, isoprene, or allene coordinated to nickel in a metallacycle, with carbonylic compounds, has been reported by Baker (example 11, Table IV). In the presence of phosphines, these metallacycles adopt a cr-allyl structure on one end and a ir-allyl structure on the other, as mentioned in Section II,A,1. The former is mainly attacked by aldehydes or electrophilic reagents in general, the latter by nucleophiles (C—H acids, see Table I, or amines, see Table IX). [Pg.221]

The relative rates for various organolithium compounds are para-tolyl > phenyl > ethyl > isopropyl. As for the ketone, the rate is enhanced by electron-withdrawing substituents which increase the coordinating power of the carbonyl carbon. It therefore appears that the crucial step is the electrophilic attack by the carbonyl on the group R of the organolithium compound. [Pg.211]

Electrophilic substitution at the anthraquinone ring system is difficult due to deactivation (electron withdrawal) by the carbonyl groups. Although the 1-position in anthraquinone is rather more susceptible to electrophilic attack than is the 2-position, as indicated by jt-electron localisation energies [4], direct sulphonation with oleum produces the 2-sulphonic acid (6.3). The severity of the reaction conditions ensures that the thermodynamically favoured 2-isomer, which is not subject to steric hindrance from an adjacent carbonyl group, is formed. However, the more synthetically useful 1-isomer (6.7) can be obtained by sulphonation of anthraquinone in the presence of a mercury(II) salt (Scheme 6.4). It appears that mercuration first takes place at the 1-position followed by displacement. Some disulphonation occurs, leading to the formation of the 2,6- and 2,7- or the 1,5- and 1,8-disulphonic acids, respectively. Separation of the various compounds can be achieved without too much difficulty. Sulphonation of anthraquinone derivatives is also of some importance. [Pg.282]

The Pd(0)-catalyzed displacement of allylic acetates (297) with various nucleophiles via the allylic Pd(II) complex (298) is a well-established procedure (Scheme 114). Through attack of electrons (+2e ) in place of nucleophiles, (298) is expected to undergo a reductive cleavage providing allylic carbanions (299) and the acetate anion along with Pd(0) complexes. The latter can then be captured by various electrophiles (polarity inversion. Scheme 114) leading to (300) [434]. This procedure is useful for the deprotection of allyl esters under neutral conditions. Recently, a mechanistic study of the Pd-catalyzed reaction of allylic acetate (297), using carbonyl compounds as an electrophile, has been reported [435]. [Pg.560]

Besides direct nucleophilic attack onto the acceptor group, an activated diene may also undergo 1,4- or 1,6-addition in the latter case, capture of the ambident enolate with a soft electrophile can take place at two different positions. Hence, the nucleophilic addition can result in the formation of three regioisomeric alkenes, which may in addition be formed as E/Z isomers. Moreover, depending on the nature of nucleophile and electrophile, the addition products may contain one or two stereogenic centers, and, as a further complication, basic conditions may give rise to the isomerization of the initially formed 8,y-unsaturated carbonyl compounds (and other acceptor-substituted alkenes of this type) to the thermodynamically more stable conjugated isomer (Eq. 4.1). [Pg.146]

Chiral phosphoric acids mediate the enantioselective formation of C-C, C-H, C-0, C-N, and C-P bonds. A variety of 1,2-additions and cycloadditions to imines have been reported. Furthermore, the concept of the electrophilic activation of imines by means of phosphates has been extended to other compounds, though only a few examples are known. The scope of phosphoric acid catalysis is broad, but limited to reactive substrates. In contrast, chiral A-triflyl phosphoramides are more acidic and were designed to activate less reactive substrates. Asymmetric formations of C-C, C-H, C-0, as well as C-N bonds have been established. a,P-Unsaturated carbonyl compounds undergo 1,4-additions or cycloadditions in the presence of A-triflyl phosphoramides. Moreover, isolated examples of other substrates can be electrophil-ically activated for a nucleophilic attack. Chiral dicarboxylic acids have also found utility as specific acid catalysts of selected asymmetric transformations. [Pg.454]

The step common to both of these reactions is electrophilic attack of a hypervalent iodine species at the a-carbon of the carbonyl compounds to yield an intermediate 3. Nucleophilic attack of methoxide ion or tosy-loxy ion with the concomitant loss of iodobenzene results in a-functionalized carbonyl compounds (Scheme 2). [Pg.4]

The introduction of umpoled synthons 177 into aldehydes or prochiral ketones leads to the formation of a new stereogenic center. In contrast to the pendant of a-bromo-a-lithio alkenes, an efficient chiral a-lithiated vinyl ether has not been developed so far. Nevertheless, substantial diastereoselectivity is observed in the addition of lithiated vinyl ethers to several chiral carbonyl compounds, in particular cyclic ketones. In these cases, stereocontrol is exhibited by the chirality of the aldehyde or ketone in the sense of substrate-induced stereoselectivity. This is illustrated by the reaction of 1-methoxy-l-lithio ethene 56 with estrone methyl ether, which is attacked by the nucleophilic carbenoid exclusively from the a-face —the typical stereochemical outcome of the nucleophilic addition to H-ketosteroids . Representative examples of various acyclic and cyclic a-lithiated vinyl ethers, generated by deprotonation, and their reactions with electrophiles are given in Table 6. [Pg.885]


See other pages where Carbonyl compounds electrophilic attack is mentioned: [Pg.602]    [Pg.602]    [Pg.119]    [Pg.477]    [Pg.43]    [Pg.111]    [Pg.155]    [Pg.300]    [Pg.180]    [Pg.609]    [Pg.19]    [Pg.14]    [Pg.180]    [Pg.609]    [Pg.1169]    [Pg.10]    [Pg.56]    [Pg.55]    [Pg.275]    [Pg.65]    [Pg.675]    [Pg.231]    [Pg.155]    [Pg.56]    [Pg.356]    [Pg.155]    [Pg.2]    [Pg.89]    [Pg.107]    [Pg.655]   
See also in sourсe #XX -- [ Pg.121 , Pg.122 ]

See also in sourсe #XX -- [ Pg.121 , Pg.122 ]

See also in sourсe #XX -- [ Pg.121 , Pg.122 ]

See also in sourсe #XX -- [ Pg.121 , Pg.122 ]




SEARCH



Carbonyl electrophiles

Electrophilic carbonyl

Electrophilic carbonylation

© 2024 chempedia.info