Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oscillatory reactions carbon model

How relevant are these phenomena First, many oscillating reactions exist and play an important role in living matter. Biochemical oscillations and also the inorganic oscillatory Belousov-Zhabotinsky system are very complex reaction networks. Oscillating surface reactions though are much simpler and so offer convenient model systems to investigate the realm of non-equilibrium reactions on a fundamental level. Secondly, as mentioned above, the conditions under which nonlinear effects such as those caused by autocatalytic steps lead to uncontrollable situations, which should be avoided in practice. Hence, some knowledge about the subject is desired. Finally, the application of forced oscillations in some reactions may lead to better performance in favorable situations for example, when a catalytic system alternates between conditions where the catalyst deactivates due to carbon deposition and conditions where this deposit is reacted away. [Pg.73]

Now possibilities of the MC simulation allow to consider complex surface processes that include various stages with adsorption and desorption, surface reaction and diffusion, surface reconstruction, and new phase formation, etc. Such investigations become today as natural analysis of the experimental studying. The following papers [282-285] can be referred to as corresponding examples. Authors consider the application of the lattice models to the analysis of oscillatory and autowave processes in the reaction of carbon monoxide oxidation over platinum and palladium surfaces, the turbulent and stripes wave patterns caused by limited COads diffusion during CO oxidation over Pd(110) surface, catalytic processes over supported nanoparticles as well as crystallization during catalytic processes. [Pg.434]

If a chemical reaction is operated in a flow reactor under fixed external conditions (temperature, partial pressures, flow rate etc.), usually also a steady-state (i.e., time-independent) rate of reaction will result. Quite frequently, however, a different response may result The rate varies more or less periodically with time. Oscillatory kinetics have been reported for quite different types of reactions, such as with the famous Belousov-Zha-botinsky reaction in homogeneous solutions (/) or with a series of electrochemical reactions (2). In heterogeneous catalysis, phenomena of this type were observed for the first time about 20 years ago by Wicke and coworkers (3, 4) with the oxidation of carbon monoxide at supported platinum catalysts, and have since then been investigated quite extensively with various reactions and catalysts (5-7). Parallel to these experimental studies, a number of mathematical models were also developed these were intended to describe the kinetics of the underlying elementary processes and their solutions revealed indeed quite often oscillatory behavior. In view of the fact that these models usually consist of a set of coupled nonlinear differential equations, this result is, however, by no means surprising, as will become evident later, and in particular it cannot be considered as a proof for the assumed underlying reaction mechanism. [Pg.213]

Sales et al. (1982) presented a simple physical model to explain oscillatory oxidation of carbon monoxide over Pt, Pd, and Ir catalysts. The model is based on a kinetic model incorporating a Langmuir-Hinshelwood reaction mechanism and the alternate oxidation and reduction of the catalyst. Simulation results of these three coupled differential equations (of oxidation of CO) model are shown to fit experimental observations. [Pg.97]


See other pages where Oscillatory reactions carbon model is mentioned: [Pg.127]    [Pg.97]    [Pg.49]    [Pg.23]    [Pg.330]    [Pg.272]    [Pg.175]    [Pg.351]    [Pg.581]    [Pg.581]    [Pg.582]    [Pg.23]    [Pg.292]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Carbonic model

Oscillatory

Oscillatory reactions

© 2024 chempedia.info