Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenes, reactions with pyridine

Reaction with pyridine leads to the formation of a UV-active pyridinium ylide. Rate constants for the alkylcarbene reaction(s) can be extracted from the intercept of the linear correlation of feobs for ylide formation versus the pyridine concentration. Consider first the 1,2-H shift that converts chloromethylcarbene (48) into vinyl chloride (Scheme 7.17). The LFP experiments show that the H shift occurs with k= 1.2 — 3.0 X 10 s in isooctane, cyclohexane, or dichloroethane at 21-25 The rearrangement is fast, but not ultrafast carbene (48) has a lifetime... [Pg.303]

Naturally, it is possible to synthesise a similar ligand system without central chirality and in fact without the unnecessary methylene linker unit. A suitable synthesis starts with planar chiral ferrocenyl aldehyde acetal (see Figure 5.30). Hydrolysis and oxidation of the acetal yields the corresponding carboxylic acid that is transformed into the azide and subsequently turned into the respective primary amine functionalised planar chiral ferrocene. A rather complex reaction sequence involving 5-triazine, bromoacetal-dehyde diethylacetal and boron trifluoride etherate eventually yields the desired doubly ferrocenyl substituted imidazolium salt that can be deprotonated with the usual potassium tert-butylate to the free carbene. The ligand was used to form a variety of palladium(II) carbene complexes with pyridine or a phosphane as coligand. [Pg.304]

The rate of the insertion reaction has been measured by laser flash photolysis Photolysis of chlorocyclopropyldiazirine (222) yielded the carbene 223 which, at 20 °C, decayed with = 8.5 x 10 s with an Arrhenius energy = 2.7 kcal moF The reaction is of a rate comparable to addition to an alkene, but slower than formation of an ylide by reaction with pyridine. [Pg.551]

To obtain k, one measures k, at several pyridine concentrations. To obtain the rate constant of carbene reaction with a quencher, Q, one holds the concentration of pyridine constant and varies the quencher concentration. A plot of k versus [Q] is now linear with slope k. For tert-butylchlorocarbene and trans-3-... [Pg.38]

When we started working with pyridine ylides we thought we would not be able to measure kj by nanosecond spectroscopy because the reactions would be complete in picoseconds. Ironically we cannot measure k in many solvents because the reaction is not much faster than carbene reaction with solvent ... [Pg.52]

The electrophilic behavior of these carbene intermediates is also shown by their reactions with pyridine and with cyclic ethers as electron donors. Pyridine forms betaines of the type 11, which are strongly colored. In 1956, Sirs noted the formation of strongly colored photoproducts with pyridine but assumed these to be C-substituted rather than N-substituted pyridines. Reaction with tetrahydrofuran produces a 1 1 copolymer, which probably arises by the mechanism shown in Scheme 9. The photopolymerization... [Pg.836]

Pyridine compounds 45 can also be produced by the NHC-Ni catalysed cycloaddition between nitriles 43 and diynes 44 (Scheme 5.13) [16]. The SIPr carbene was found to be the best ligand for the nickel complex in this reaction. The reaction required mild reaction conditions and low catalyst loadings, as in the case of cycloaddition of carbon dioxide. In addition to tethered aUcynes (i.e. diynes), pyridines were prepared from a 3-component coupling reaction with 43 and 3-hexyne 23 (Scheme 5.13). The reaction of diynes 44 and nitriles 43 was also catalysed by a combination of [Ni(COD)J, NHC salts and "BuLi, which generates the NHC-Ni catalyst in situ. The pyridines 45 were obtained with comparable... [Pg.138]

Further studies were carried out with halocarbene amides 34 and 357 Although again no direct spectroscopic signatures for specifically solvated carbenes were found, compelling evidence for such solvation was obtained with a combination of laser flash photolysis (LFP) with UV-VIS detection via pyridine ylides, TRIR spectroscopy, density functional theory (DFT) calculations, and kinetic simulations. Carbenes 34 and 35 were generated by photolysis of indan-based precursors (Scheme 4.7) and were directly observed by TRIR spectroscopy in Freon-113 at 1635 and 1650 cm , respectively. The addition of small amounts of dioxane or THF significantly retarded the rate of biomolecular reaction with both pyridine and TME in Freon-113. Also, the addition of dioxane increased the observed lifetime of carbene 34 in Freon-113. These are both unprecedented observations. [Pg.200]

NHC ligands with a pendant group that enforces chelation have also been coordinated to copper centers. The reaction of Cu20 with pyridine fV-functionalized carbene ligand led to the formation of several compounds.91 In the case of mesityl derivatives, a dinuclear complex with a weak metal-metal interaction was isolated 60,91 whereas for the bulkier 2,6-diisopropylphenyl group, a monomeric complex was formed and characterized 61 (Figure 25).91... [Pg.173]

Aryl(trimethylsiloxy)carbenes. Acylsilanes (153) undergo a photoinduced C —> O silyl shift leading to aryl(trimethylsiloxy)carbenes (154).73,74 The carbenes 154 can be captured by alcohols to form acetals (157) 73 or by pyridine to give transient ylides (Scheme 29).75 LFP of 153 in TFE produced transient absorptions of the carbocations 155 which were characterized by their reactions with nucleophiles.76 The cations 155 are more reactive than ArPhCH+, but only by factors < 10. Comparison of 154 and 155 with Ar(RO)C and Ar(RO)CH+, respectively, would be of interest. Although LFP was applied to generate methoxy(phenyl)carbene and to monitor its reaction with alcohols,77 no attempt was made to detect the analogous carbocation. [Pg.21]

Relative rates of some prototypical carbenes, obtained by Stem-Volmer methods, are listed in Table 2. Although many of these carbenes have triplet ground states, reaction with nucleophiles Y occurs prior to spin equilibration. Most often, ylide formation with solvent molecules was analysed in terms of Eq. 3. The pyridine-ylide served as the probe for 154. [Pg.30]

In the 1988-1999 period, almost all absolute kinetic studies of carbenic reactions employed LFP with UV detection. Carbenes that contain a UV chromophore (e.g., PhCCl) are easily observed, and their decay kinetics during reaction can be readily followed by LFP.11 However, alkyl, alkylhalo, and alkylacyloxycarbenes are generally transparent in the most useful UV region. To follow their kinetics, Jackson et al. made use of the ylide method, 12 in which the laser-generated carbene (2) is competitively captured by (e.g.) pyridine, forming a chromophoric ylide (3, cf. Scheme 1). The observed pseudo first order rate constants (kobs) for the growth of ylide 3 at various concentrations of pyridine are monitored by UV spectroscopy, and obey Eq. 1. [Pg.54]

Ifcobs is directly proportional to pyridine concentration. Therefore a plot of kobs vs. [pyridine] is linear, with a slope (k ) equal to the second order rate constant for ylide formation, and an intercept (k0) equal to the sum of all processes that destroy the carbene in the absence of pyridine (e.g.) intramolecular reactions, carbene dimerization, reactions with solvent, and, in the case of diazirine or diazo carbene precursors, azine formation. [Pg.54]

Pyridine ylide/LFP studies of 83-85 in pentane or isooctane afforded carbene lifetimes of 21-24 ns (k 4 to 5 x 107 s 1), similar to the lifetime of dimethylcarbene under these conditions. Unfortunately, these lifetimes are limited by reactions with the hydrocarbon solvents the lifetime of 83 is 1.5 times longer in cyclohexane-d12 than in cyclohexane. The observation that the lifetimes of 55-CI ( 1000 ns) and 55-F (—7000 ns) are considerably longer than those of 83 and 84 could reflect the superior stabilization provided by the halogen spectator substituents of 55, but this conclusion is tentative in the absence of definitive intramolecularly controlled lifetimes for 83-85. [Pg.96]

The reaction of carbenes 1, generated either thermally or photochemically from the corresponding quinone diazides 2, with pyridine results in the formation of the deeply colored betaines which can be isolated in substance from the reaction mixture.73,62 This alternative synthesis of the betaines opens a general route to pyridine ylides unsubstituted at the pyridine ring. [Pg.179]

Several reaction sequences have been reported in which Fischer-type carbene complexes are converted in situ into non-heteroatom-substituted carbene complexes, which then cyclopropanate simple olefins [306,307] (Figure 2.22). This can, for instance, be achieved by treating the carbene complexes with dihydropyridines, forming (isolable) pyridinium ylides. These decompose thermally to yield pyridine and highly electrophilic, non-heteroatom-substituted carbene complexes (Figure 2.22) [46]. [Pg.45]

Few examples of the preparation of six-membered heteroaromatic compounds using Fischer-type carbene complexes have been reported [224,251,381]. One intriguing pyridine synthesis, reported by de Meijere, is sketched in Figure 2.35. In this sequence a (2-aminovinyl)carbene complex first rearranges to yield a complexed 1 -azadiene, which undergoes intermolecular Diels-Alder reaction with phenylacetylene. Elimination of ethanol from the initially formed adduct leads to the final pyridine. [Pg.67]

The absolute rate constants for reaction of /t-tolyl(trifluoromethyl)carbene, generated by laser flash photolysis of the corresponding diazirine, with pyridine (4 x lO lmor s ... [Pg.254]

Ab initio and RRKM calculations indicate that the reactions of C, CH, and (H2C ) with acetylene occur with no barrier." Laser flash photolysis of the cyclopropanes (69) and (70) was used to generate the corresponding dihalocarbenes. The absolute rate constant for the formation of a pyridine ylide from Br2C was (4-11) x 10 lmoP s. The rates of additions of these carbenes to alkenes were measured by competition with pyridine ylide formation and the reactivity of BrClC was found to resemble that of Br2C rather than CI2C . [Pg.262]

Extensive studies on diastereoselectivity in the reactions of 1,3-dipoles such as nitrile oxides and nitrones have been carried out over the last 10 years. In contrast, very little work was done on the reactions of nitrile imines with chiral alkenes until the end of the 1990s and very few enantiomerically pure nitrile imines were generated. The greatest degree of selectivity so far has been achieved in cycloadditions to the Fischer chromium carbene complexes (201) to give, initially, the pyrazohne complexes 202 and 203 (111,112). These products proved to be rather unstable and were oxidized in situ with pyridine N-oxide to give predominantly the (4R,5S) product 204 in moderate yield (35-73%). [Pg.505]

Alkylcarbenes generally lack useful UV signals for LFP studies, but they can be indirectly visualized by the pyridine ylide method in which their intramolecular reactions compete kinetically with capture of the carbene by added pyridine. [Pg.302]


See other pages where Carbenes, reactions with pyridine is mentioned: [Pg.397]    [Pg.2186]    [Pg.300]    [Pg.715]    [Pg.2185]    [Pg.299]    [Pg.315]    [Pg.231]    [Pg.362]    [Pg.35]    [Pg.286]    [Pg.361]    [Pg.378]    [Pg.22]    [Pg.56]    [Pg.192]    [Pg.110]    [Pg.859]    [Pg.165]    [Pg.185]    [Pg.490]    [Pg.35]    [Pg.308]    [Pg.310]    [Pg.313]   
See also in sourсe #XX -- [ Pg.406 ]




SEARCH



Carbene reactions

Carbenes reactions

Pyridination reaction

Pyridine with

Pyridine, reactions

Reaction with carbenes

Reactions, with pyridine

With Carbenes

© 2024 chempedia.info