Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbanions effects

A comparative study of gas-phase and liquid-phase CH acidity of a-substituted cyclopropanes has verified the correctness of an electrostatic model for the effect of solvation on equilibrium acidity 127 among variants of the LCAO MO method, only the semiempirical AMI method accurately predicted the proton affinity of the conjugate carbanions effects of solvation on protonation rates have been desegregated. [Pg.344]

Acetalization of thiochroman-3-one gives a 1 1 diastereomeric mixture and subsequent oxidation with Davis reagent, W-(phenylsulfonyl)(3,3-dichlorocamphoryl)oxaziridine, yielded the sulfoxides each with a 4 1 enantioselectivity. Chiral chromatographic separation of the diastereomers preceded isolation of the major enantiomers. (3-Elimination and isomerization of the double bond then produced the individual thiochromene 1-oxide diastereomers. The generation of an a-sulfinyl carbanion effects the cleavage of one of the acetal C-O bonds with the protected diol released in a final ozonolysis step. The stereochemical results indicate that it is the C-O bond syn to the sulfoxide function that is cleaved (Scheme 63) <1996TA29>. [Pg.829]

The introduction of additional alkyl groups mostly involves the formation of a bond between a carbanion and a carbon attached to a suitable leaving group. S,.,2-reactions prevail, although radical mechanisms are also possible, especially if organometallic compounds are involved. Since many carbanions and radicals are easily oxidized by oxygen, working under inert gas is advised, until it has been shown for each specific reaction that air has no harmful effect on yields. [Pg.19]

Thioglycohc acid is recommended as a cocatalyst with strong mineral acid in the manufacture of bisphenol A by the condensation of phenol and acetone. The effect of the mercapto group (mercaptocarboxyhc acid) is attributed to the formation of a more stable carbanion intermediate of the ketone that can alkylate the phenol ring faster. The total amount of the by-products is considerably reduced (52). [Pg.6]

The exploration of the chemistry of azirines has led to the discovery of several pyrrole syntheses. From a mechanistic viewpoint the simplest is based upon their ability to behave as a-amino ketone equivalents in reactions analogous to the Knorr pyrrole synthesis cf. Section 3.03.3.2.2), as illustrated in Schemes 91a and 91b for reactions with carbanions. Parallel reactions with enamines or a-keto phosphorus ylides can be effected with electron-deficient 2//-azirines (Scheme 91c). Conversely, electron-rich azirines react with electron deficient alkynes (Scheme 91d). [Pg.139]

There are at least two mechanisms available for aziridine cis-trans isomerism. The first is base-catalyzed and proceeds via an intermediate carbanion (235). The second mechanism can be either thermally or photochemically initiated and proceeds by way of an intermediate azomethine ylide. The absence of a catalytic effect and interception of the 1,3-dipole intermediate provide support for this route. A variety of aziridinyl ketones have been found to undergo equilibration when subjected to base-catalyzed conditions (65JA1050). In most of these cases the cis isomer is more stable than the trans. Base-catalyzed isotope exchange has also been observed in at least one molecule which lacks a stabilizing carbonyl group (72TL3591). [Pg.72]

Carbanion-stabilizing effects have been calculated at several levels of theory. Table 7.6 gives some gas-phase data. The AMI and PM3 semiempirical calculations have also been done in water. The order NO2 > CH=0 > CN > Ph > CH2=CH is in accord with the experimental trends and reflects charge delocalization. The electronegative substituents F, OH, and NH2 are stabilizing by virtue of polar effects. The small stabilization provided by CH3 is presumabfy a polarization effect. [Pg.417]

The pA of 1,3-dithiane is 36.5 (Cs" ion pair in THF). The value for 2-phenyl-1,3-dithiane is 30.5. There are several factors which can contribute to the anion-stabilizing effect of sulfur substituents. Bond dipole effects contribute but carmot be the dominant factor because oxygen substituents do not have a comparable stabilizing effect. Polarizability of sulfur can also stabilize the carbanion. Delocalization can be described as involving 3d orbitals on sulfur or hyperconjugation with the a orbital of the C—S bond. MO calculations favor the latter interpretation. An experimental study of the rates of deprotonation of phenylthionitromethane indicates that sulfur polarizability is a major factor. Whatever the structural basis is, there is no question that thio substituents enhance... [Pg.423]

The effects of fluonnation on carbanion stability are largely deduced from C-H acidity data (p. 988) [64], a-Halogens stabilize carbanions in the order Br > Cl > F, which IS opposite the inductive electron-withdrawing order and reflects the... [Pg.995]

In contrast to the facile condensation of o-nitrotoluene with diethyl oxalate, other a-alky] nitrobenzenes are sluggish to react with diethyl oxalate or fail to react at all. It has been suggested that this is due both to steric and electronic factors effected by the alky] group, which destabilizes the methylene group in regard to formation of the carbanion. ... [Pg.156]

The thenyl cyanides are of great importance for the preparation of thiophene derivatives. Because of the acidifying effects of both the thienyl and of the cyano groups, carbanions are easily obtained through the reaction with sodamide or sodium ethoxide, which can be alkylated with halides, carbethoxylated with ethyl carbonate, or acylated by Claisen condensation with ethyl... [Pg.93]

The cyanide ion plays an important role in this reaction, for it has three functions in addition to being a good nucleophile, its electron-withdrawing effect allows for the formation of the carbanion species by proton transfer, and it is a good leaving group. These features make the cyanide ion a specific catalyst for the benzoin condensation. [Pg.37]

Carbanions of ct-chloroalkyl phenyl sulfones react with nitrobenzenes to effect tlirect nucleophilic replacement of hydrogens located on o and para to the nitro group fEq. 9.24. A very important feature is that VNS of hydrogen usually proceeds faster than conventional SnAt of halogen located In equally activated positions fEq. 9.25. The rule that VNS of... [Pg.311]

Many initiators, such as alkyl and aryllithium and sodium and lithium suspensions in liquid ammonia, effect the polymerization. For example, acrylonitrile combined with n-butyllithium forms a carbanion intermediate ... [Pg.308]


See other pages where Carbanions effects is mentioned: [Pg.239]    [Pg.239]    [Pg.2410]    [Pg.561]    [Pg.28]    [Pg.95]    [Pg.320]    [Pg.109]    [Pg.261]    [Pg.26]    [Pg.102]    [Pg.103]    [Pg.34]    [Pg.382]    [Pg.405]    [Pg.411]    [Pg.411]    [Pg.412]    [Pg.416]    [Pg.424]    [Pg.424]    [Pg.16]    [Pg.17]    [Pg.896]    [Pg.53]    [Pg.73]    [Pg.236]    [Pg.257]    [Pg.134]    [Pg.339]    [Pg.313]    [Pg.393]   
See also in sourсe #XX -- [ Pg.109 ]




SEARCH



© 2024 chempedia.info