Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butane electrostatic forces

Fig. 1. The time evolution (top) and average cumulative difference (bottom) associated with the central dihedral angle of butane r (defined by the four carbon atoms), for trajectories differing initially in 10 , 10 , and 10 Angstoms of the Cartesian coordinates from a reference trajectory. The leap-frog/Verlet scheme at the timestep At = 1 fs is used in all cases, with an all-atom model comprised of bond-stretch, bond-angle, dihedral-angle, van der Waals, and electrostatic components, a.s specified by the AMBER force field within the INSIGHT/Discover program. Fig. 1. The time evolution (top) and average cumulative difference (bottom) associated with the central dihedral angle of butane r (defined by the four carbon atoms), for trajectories differing initially in 10 , 10 , and 10 Angstoms of the Cartesian coordinates from a reference trajectory. The leap-frog/Verlet scheme at the timestep At = 1 fs is used in all cases, with an all-atom model comprised of bond-stretch, bond-angle, dihedral-angle, van der Waals, and electrostatic components, a.s specified by the AMBER force field within the INSIGHT/Discover program.
It is interesting to compare the possibilities and errors of different hybrid QM/MM schemes. The careful examination and comparison of link atom and LSCF techniques was performed in Ref. [128] using the CHARMM force field [114] and the AMI method [143] as a quantum chemical procedure. In the case of the link atom procedure two options were used QQ - the link atom does not interact with the MM subsystem and HQ - link atom interacts with all MM atoms. The main conclusion of this consideration is that the LSCF and the link atom schemes are of similar quality. The error in the proton affinity determination induced by these schemes is several kcal/mol. It is noteworthy that all the schemes work rather badly in description of conformational properties of n-butane. The large charge on the MM atoms in the proximity of the QM subsystem (especially on the boundary atom) cause significant errors in the proton affinity estimates for all methods (especially, in the case of the LSCF approach where the error can be of tens of kcal/mol). This is not surprising since the stability and transferability of intrabond one- and two-electron density matrix elements Eq. (19) is broken here. It proves that the simple electrostatic model is not well appropriate for these schemes and that a detailed analysis of the... [Pg.234]


See other pages where Butane electrostatic forces is mentioned: [Pg.275]    [Pg.436]    [Pg.459]    [Pg.1077]    [Pg.195]    [Pg.109]    [Pg.52]    [Pg.187]    [Pg.31]    [Pg.132]    [Pg.109]    [Pg.32]   
See also in sourсe #XX -- [ Pg.275 ]




SEARCH



Electrostatic forces

© 2024 chempedia.info