Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bond valuation equality

The valuation of a conventional bond can be performed also using a binomial tree. On maturity, the bond must be priced at par value plus the semiannual coupon payment equal to 2.75. Therefore, the value of a conventional IxHid at maturity tio must be equal to 102.75. The value of the bond in other nodes prior to maturity is calculated using the semi-aimual discount rate of 4.02%. For instance, at node the pricing is given by Equation (9.6) ... [Pg.181]

The option-adjusted spread (OAS) is the most important measure of risk for bonds with embedded options. It is the average spread required over the yield curve in order to take into account the embedded option element. This is, therefore, the difference between the yield of a bond with embedded option and a government benchmark bond. The spread incorporates the future views of interest rates and it can be determined with an iterative procedure in which the market price obtained by the pricing model is equal to expected cash flow payments (coupons and principal). Also a Monte Carlo simulation may be implemented in order to generate an interest rate path. Note that the option-adjusted spread is influenced by the parameters implemented into the valuation model as the yield curve, but above all by the volatility level assumed. This is referred to volatility dependent. The higher the volatility, the lower the option-adjusted spread for a callable bond and the higher for a putable bond. [Pg.221]

Consider the following example. We assume to have two hypothetical bonds, a treasury bond and a callable bond. Both bonds have the same maturity of 5 years and pay semiannual coupons, respectively, of 2.4% and 5.5%. We perform a valuation in which we assume a credit spread of 300 basis points and an OAS spread of 400 basis points above the yield curve. Table 11.1 illustrates the prices of a treasury bond, conventional bond and callable bond. In particular, considering only the credit spread we find the price of a conventional bond or option-free bond. Its price is 106.81. To pricing a callable bond, we add the OAS spread over the risk-free yield curve. The price of this last bond is 99.02. We can now see that the OAS spread underlines the embedded call option of the callable bond. It is equal to 106.81-99.02, or 7.79. In Section 11.2.3, we will explain the pricing of a callable bond with the OAS methodology adopting a binomial tree. [Pg.222]

The fundamental principle of valuation is that the value of any financial asset is equal to the present value of its expected future cash flows. This principle holds for any financial asset from zero-coupon bonds to interest rate swaps. Thus, the valuation of a financial asset involves the following three steps ... [Pg.41]

Thus far our coverage of valuation has been on fixed-rate coupon bonds. In this section we look at how to value credit-risky floaters. We begin our valuation discussion with the simplest possible case—a default risk-free floater with no embedded options. Suppose the floater pays cash flows quarterly and the coupon formula is 3-month LIBOR flat (i.e., the quoted margin is zero). The coupon reset and payment dates are assumed to coincide. Under these idealized circumstances, the floater s price will always equal par on the coupon reset dates. This result holds because the floater s new coupon rate is always reset to reflect the current market rate (e.g., 3-month LIBOR). Accordingly, on each coupon reset date, any change in interest rates (via the reference rate) is also reflected in the size of the floater s coupon payment. [Pg.59]


See also in sourсe #XX -- [ Pg.16 , Pg.45 ]




SEARCH



Bond valuation

Equal

Equaling

Equality

Equalization

© 2024 chempedia.info