Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

BINAP asymmetric hydrogenation

One of the earliest examples of such catalysis was demonstrated in 1966 by the Japanese chemist Hitosi Nozaki, who reacted styrene and ethyl diazoacetate in the presence of a chiral Schiffbase-Cu11 complex [72-74], Although the initial enantios-electivity was modest (<10% ee), the principle was proven. Some years later, the companies Sumitomo and Merck used similar copper catalysts for asymmetric cyclopropanation on a multikilogram scale, in the production of various insecticides and antibiotics [75]. One of Nozaki s PhD students at that time was Rioji Noyori, who later developed the BINAP asymmetric hydrogenation catalysts for which he received the 2001 Nobel Prize in Chemistry [7[. [Pg.95]

Fig. 35. The optimization of S-Naproxen synthesis using Ru-BINAP asymmetric hydrogenation... Fig. 35. The optimization of S-Naproxen synthesis using Ru-BINAP asymmetric hydrogenation...
Asymmetric hydrogenation has been achieved with dissolved Wilkinson type catalysts (A. J. Birch, 1976 D. Valentine, Jr., 1978 H.B. Kagan, 1978). The (R)- and (S)-[l,l -binaph-thalene]-2,2 -diylblsCdiphenylphosphine] (= binap ) complexes of ruthenium (A. Miyashita, 1980) and rhodium (A. Miyashita, 1984 R. Noyori, 1987) have been prepared as pure atrop-isomers and used for the stereoselective Noyori hydrogenation of a-(acylamino) acrylic acids and, more significantly, -keto carboxylic esters. In the latter reaction enantiomeric excesses of more than 99% are often achieved (see also M. Nakatsuka, 1990, p. 5586). [Pg.102]

Catalytic asymmetric hydrogenation was one of the first enantioselective synthetic methods used industrially (82). 2,2 -Bis(diarylphosphino)-l,l -binaphthyl (BINAP) is a chiral ligand which possesses a Cg plane of symmetry (Fig. 9). Steric interactions prevent interconversion of the (R)- and (3)-BINAP. Coordination of BINAP with a transition metal such as mthenium or rhodium produces a chiral hydrogenation catalyst capable of inducing a high degree of enantiofacial selectivity (83). Naproxen (41) is produced in 97% ee by... [Pg.248]

Reaction Characteristics of Immobilized Ru-BINAP Catalysts in Asymmetric Hydrogenation of Dimethyl itaconate... [Pg.349]

In this work, various Ru-BINAP catalysts immobilized on the phosphotungstic acid(PTA) modified alumina were prepared and the effects of the reaction variables (temperature, H2 pressure, solvent and content of triethylamine) on the catalytic performance of the prepared catalysts were investigated in the asymmetric hydrogenation of dimethyl itaconate (DMIT). [Pg.349]

Fig. 1. P MAS NMR spectrum of (a)Ru-BrNAP/PTA/y-Al203, and (b)Ru-BINAP crt rlex In order to find the characteristics of the immobilized catalyst, asymmetric hydrogenation of the prochiral C=C bond was performed as a model reaction. Firstly, three different homogeneous Ru-BINAP complexes including [RuCl2((R)-BINAP)], [RuCl((R)-BINAP)(p-cymene)]Cl and [RuCl((R)-BINAP)(Benzene)]Cl were immobilized on the PTA-modified alumina. Reaction test of immobilized catalysts showed that [RuCl2((R)-BINAP)] was the most active and selective so all the experiment were done using this catalyst afterwards. Fig. 1. P MAS NMR spectrum of (a)Ru-BrNAP/PTA/y-Al203, and (b)Ru-BINAP crt rlex In order to find the characteristics of the immobilized catalyst, asymmetric hydrogenation of the prochiral C=C bond was performed as a model reaction. Firstly, three different homogeneous Ru-BINAP complexes including [RuCl2((R)-BINAP)], [RuCl((R)-BINAP)(p-cymene)]Cl and [RuCl((R)-BINAP)(Benzene)]Cl were immobilized on the PTA-modified alumina. Reaction test of immobilized catalysts showed that [RuCl2((R)-BINAP)] was the most active and selective so all the experiment were done using this catalyst afterwards.
Effect of reaction conditions on the asymmetric hydrogenation of dimethyl itaconate over immobilized Ru-BINAP catalyst... [Pg.351]

Asymmetric hydrogenation of 2- Ru-BINAP-chiral S-Naprt)xen Pharma... [Pg.60]

Asymmetric hydrogenation of diketene with Ru-(S)-BINAP to Maxwell (1997)... [Pg.174]

Manufacture of ruthenium precatalysts for asymmetric hydrogenation. The technology in-licensed from the JST for the asymmetric reduction of ketones originally employed BINAP as the diphosphine and an expensive diamine, DAIPEN." Owing to the presence of several patents surrounding ruthenium complexes of BINAP and Xylyl-BINAP, [HexaPHEMP-RuCl2-diamine] and [PhanePHOS-RuCl2-diamine] were introduced as alternative catalyst systems in which a cheaper diamine is used. Compared to the BINAP-based systems both of these can offer superior performance in terms of activity and selectivity and have been used in commercial manufacture of chiral alcohols on multi-100 Kg scales. [Pg.75]

The use of an analogous (S)-BINAP-Ru-diacetate catalyst with axial chirality has led to important industrial applications, such as the synthesis developed by Monsanto where the asymmetric hydrogenation is involved in the last step to yield naproxen, a widely prescribed, non-steroidal, anti-inflammatory drug (Equation (9)).96... [Pg.88]

OPTICALLY ACTIVE 3-HYDROXY CARBOXYLATES OBTAINED BY (R)-BINAP-Ru-CATALYZED ASYMMETRIC HYDROGENATION OF 3-OXO CARBOXYLATES ... [Pg.7]

ASYMMETRIC HYDROGENATION OF 3-OXO CARBOXYLATES USING BINAP-RUTHENIUM COMPLEXES (R)-(-)-METHYL 3-HYDROXYBUTANOATE (Butanoic acid, 3-hydroxy-, methyl ester, (R)-)... [Pg.137]

The BINAP system of general structure 111 can be used in asymmetric hydrogenations the compound in which Ar = S.S-MejCgHj, R1 = R2 = 4-MeOCgH4,... [Pg.113]

Figure 6.4. (Rj-BINAP ligands used in ruthenium catalysed asymmetric hydrogenation of dimethyl... Figure 6.4. (Rj-BINAP ligands used in ruthenium catalysed asymmetric hydrogenation of dimethyl...
Asymmetric hydrogenation of nitrones in an iridium catalyst system, prepared from [IrCl(cod)]2, (S)-BINAP, NBu 4 BH4, gives with high enantioselectivity the corresponding A-hydroxylamines which are important biologically active compounds and precursors of amines (480). Further reduction of hydroxylamines to secondary amines or imines can be realized upon treatment with Fe/AcOH (479), or anhydrous titanium trichloride in tetrahydrofuran (THF) at room temperature (481). [Pg.213]


See other pages where BINAP asymmetric hydrogenation is mentioned: [Pg.246]    [Pg.116]    [Pg.352]    [Pg.352]    [Pg.264]    [Pg.265]    [Pg.76]    [Pg.173]    [Pg.196]    [Pg.229]    [Pg.74]    [Pg.447]    [Pg.140]    [Pg.116]    [Pg.150]    [Pg.17]    [Pg.2]    [Pg.2]    [Pg.2]    [Pg.4]    [Pg.4]    [Pg.4]    [Pg.4]    [Pg.5]    [Pg.6]    [Pg.23]    [Pg.28]    [Pg.29]    [Pg.32]    [Pg.33]    [Pg.33]   


SEARCH



Asymmetric BINAP

BINAP

BINAP hydrogenations

BINAPs

© 2024 chempedia.info