Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Baylis—Hillman alcohol derivative

Baylis-Hillman alcohols and their derivatives represent a particularly useful group of regents widely utilized in the synthesis of a-aUcylidene y and 8-lactones and lactams. These attractive synthetic intermediates easily undergo alkylation reactions of various nucleophiles resulting in the introduction of ester and alkylidene moieties into the target molecules. [Pg.161]

While the notion that the alkoxides derived from aliphatic alcohols are poor nucleophiles toward 7r-allylmetal complexes has prevailed over the years, much progress made in the recent past has rendered the transition metal-catalyzed allylic alkylation a powerful method for the O-allylation of aliphatic alcohols. In particular, owing to the facility of five- and six-membered ring formation, this process has found extensive utility in the synthesis of tetrahydrofurans (THFs) (Equation (29))150-156 and tetrahydropyrans (THPs).157-159 Of note was the simultaneous formation of two THP rings with high diastereoselectivity via a Pd-catalyzed double allylic etherification using 35 in a bidirectional synthetic approach to halichondrin B (Equation (30)).157 The related ligand 36 was used in the enantioselective cyclization of a Baylis-Hillman adduct with a primary alcohol (Equation (31)).159... [Pg.659]

It is also possible to carry out a substrate-controlled reaction with aldehydes in an asymmetric way by starting with an acetylene bearing an optically active ester group, as shown in Eq. 9.8 [22]. The titanium—acetylene complexes derived from silyl propiolates having a camphor-derived auxiliary react with aldehydes with excellent diastereoselectivity. The reaction thus offers a convenient entry to optically active Baylis—Hillman-type allyl alcohols bearing a substituent (3 to the acrylate group, which have hitherto proved difficult to prepare by the Baylis—Hillman reaction itself. [Pg.326]

Boron enolates bearing menthol-derived chiral ligands have been found to exhibit excellent diastereo- and enantio-control on reaction with aldehydes34 and imines.35 Highly diastereo- and enantio-selective aldol additions of geometrically defined trichlorosilyl ketone enolates (31) and (32) have been achieved by promoting the reactions with chiral Lewis bases, of which (,S., S )-(33) proved to be the most effective.36 Moderate enantiomeric excesses have been achieved by using chiral ammo alcohols as catalysts for the Baylis-Hillman condensation of aldehydes with methyl vinyl ketone the unexpected pressure effect on the reaction has been rationalized.37... [Pg.334]

Sato and coworkers have reported an asymmetric synthesis of Baylis-Hillman-type allylic alcohols 48, 49 via a chiral acetylenic ester titanium alkoxide complex (Scheme 9) [41]. These reactions rely on the use of the novel acetylenic ester titanium alkoxide complex 44 with a camphor-derived chiral auxiliary. Optically active, stereodefined hydroxy acrylates 46, 47 were obtained in high yields and with excellent regio- and diastereoselectivities. The chiral auxiliary was subsequently cleaved off by alcoholysis. [Pg.173]

Solid-phase synthesis by the cyclization of polymer-bound hydrazones of [1-keto esters. Jung and co-workers (99JOC1362) (Scheme 24) have reported the synthesis of pyrazol-3-one 102 from polymer-bound /1-keto ester 100 and phenyl hydrazine. In the first step, polymer-bound 3-hydroxy-2-methylidenepropionic acid 99 is derived from a Baylis-Hillman reaction between polymer-bound allylic alcohol... [Pg.162]

Kinetic resolutions. Baylis-Hillman adducts are deracemized by exploiting their reactivity toward Pd(0)-catalyzed substitution, using chiral ligand 2. Both the planar chiral DMAP derivative 3 and the axially chiral analogue (4) ° and 5" have been developed as catalysts for enantioselective acylation. Benzylic alcohols undergo enantioselective acylation with the aid of 6. Methanolysis of meio-anhydrides in the presence of a cinchona alkaloids is a good way to desymmetrize such compounds. ... [Pg.97]

From a TiCVcatalyzed Baylis-Hillman reaction in the presence of 10-methylth-ioisoborneol, chiral adducts ensue. The acryloyl derivative 50 is a particularly interesting addend because either (/ )- or (5)-alcohols can be prepared by merely changing the solvent. Another variation employs hexafluoroisopropyl acrylate and ligand SI. ... [Pg.105]

In numerous synthetic studies it has been demonstrated that DMP can be used for a selective oxidation of alcohols containing sensitive functional groups, such as unsaturated alcohols [297,1215-1218], carbohydrates and polyhydroxy derivatives [1216, 1219-1221], silyl ethers [1222,1223], amines and amides [1224-1227], various nucleoside derivatives [1228-1231], selenides [1232], tellurides [1233], phosphine oxides [1234], homoallylic and homopropargylic alcohols [1235], fluoroalcohols [1236-1239] and boronate esters [1240]. Several representative examples of these oxidations are shown below in Schemes 3.349-3.354. Specifically, the functionalized allylic alcohols 870, the Baylis-Hillman adducts of aryl aldehydes and alkyl acrylates, are efficiently oxidized with DMP to the corresponding a-methylene-p-keto esters 871 (Scheme 3.349) [1217]. The attempted Swern oxidation of the same adducts 870 resulted in substitution of the allylic hydroxyl group by chloride. [Pg.297]

The Morita-Baylis-Hillman reaction is, in general, a carbon-carbon bondforming reaction of an a,(3-unsaturated compound with an aldehyde mediated by an organic nucleophilic base resulting in the formation of an allylic alcohol. Morita reported the use of a phosphine as catalyst and Baylis and Hillman used a tertiary amine. Variation of the electrophile to electron-deficient alkenes in a Michael-Michael elimination sequence leads to homo- and heterodimerisation and is known as the Rauhut-Currier reaction. The electrophilic aldehyde could be substituted by an imine or derivative in the aza-Morita-Baylis-Hillman reaction. Recently, there has been an increase in the use of this reaction for the construction of many different targets using many different amine derived catalysts. Scheme 2.2 shows a general view of this reaction and the accepted mechanism. ... [Pg.10]

Chiral cyclohexene derivatives were also constructed by an asymmetric four-component quadruple domino reaction initiated by oxa-Michael addition of alcohols to acrolein. The other two components were another equivalent of acrolein and a nitroalkene. Enders has shown that cyclohexene derivatives can also be assembled by a domino reaction of y-nitroketones and enals. Domino Michael/aldol condensation of 5-oxoalkanals and a,p-unsaturated aldehydes afforded densely functionalised cyclohexenes. Combination of unsaturated aldehydes with unsaturated p-ketoesters resulted in the formation of chiral cyclohexene derivatives via a Michael/ Morita-Baylis-Hillman sequence (Scheme 8.21). ... [Pg.177]

Cinchona alkaloid derivatives can also serve as useful Lewis basic catalysts, as very well exemplified by their successful employment in the Morita-Baylis-Hillman (MBH) reaction and its aza variant (aza-MBH), which provide a convenient access to functionalised allylie aleohols and amines. As early as 1999 Hatakeyama and coworkers reported the use of p-isocupreidine (P-ICPD) as a catalyst for the reaction of aliphatic and aromatic aldehydes with 1,1,1,3,3,3-hexafluoroisopropyl acrylate, affording the desired adducts with very high enantioselectivities (Scheme 14.19). The concomitant formation of the dioxanone derivatives lowered the yield in the MBH adducts and caused difficulties in the experimental proeedure. Interestingly, the dioxanone derivatives had the opposite eonfiguration at the alcoholic stereocentre compared to the MBH produet, highlighting an intriguing mechanistic feature of this Lewis-base catalysed reaction. ... [Pg.24]

In 2005, Wang and coworkers reported a new bifunctional binaphthyl-derived amine thiourea 16 as an efficient organocatalyst for the Morita-Baylis-Hillman reaction of cyclohexenone with aliphatic, aromatic and sterically hindered aldehydes. The design of the catalyst follows Takemoto s design of a bifunctional motif. This catalytic protocol provided access to useful chiral allylic alcohol building blocks in high yields and high enan-tioselectivities (Scheme 19.21). [Pg.209]

Recently, organocatalytic enantioselective transformations of the densely functionalized Baylis-Hillman adducts and their derivatives have gained continuous interest, which opened a new access to the synthesis of optically active functionalized structures [125]. BH adducts and their derivatives include BH alcohols, BH acetates, BH carbonates, and halides, among which BH carbonates are more reactive and hence have received much attention recently. In this section, we will review all the reactions that appeared in the last few years with the use of BH carbonates as substrates. [Pg.335]


See other pages where Baylis—Hillman alcohol derivative is mentioned: [Pg.166]    [Pg.166]    [Pg.161]    [Pg.204]    [Pg.68]    [Pg.188]    [Pg.150]    [Pg.488]    [Pg.222]    [Pg.378]    [Pg.227]    [Pg.3]   
See also in sourсe #XX -- [ Pg.161 , Pg.162 , Pg.163 , Pg.164 , Pg.165 , Pg.166 ]




SEARCH



Alcohols derivatives

Baylis-Hillman

Hillman

© 2024 chempedia.info