Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Barriers to rotation

The barriers to rotation about the N-C bond have been determined b dynamic nuclear magnetic resonance for A -isopropyl (80. 81). propanoic acid (74). A -ethyl (82). N-benzyl. and A -neopentyl substituents (82). Selected values of these barriers are given in Tables VII-6 and VII-7. [Pg.384]

TABLE VIL6. BARRIERS TO ROTATION AROUND sp- -sp BOND FOR VARIOUS 3-SUBSTITUENTS IN THE A-4-THIAZ0LINE-2-TH10NE SERIES OBTAINED BY DYNAMIC NUCLEAR MAGNETIC RESONANCE. [Pg.387]

Isomeric alkenes may be either constitutional isomers or stereoisomers There is a sizable barrier to rotation about a carbon-carbon double bond which corresponds to the energy required to break the rr component of the double bond Stereoisomeric alkenes are configurationally stable under normal conditions The configurations of stereoisomeric alkenes are described according to two notational systems One system adds the prefix CIS to the name of the alkene when similar substituents are on the same side of the double bond and the prefix trans when they are on opposite sides The other ranks substituents according to a system of rules based on atomic number The prefix Z is used for alkenes that have higher ranked substituents on the same side of the double bond the prefix E is used when higher ranked substituents are on opposite sides... [Pg.220]

Table 8—3. Barriers to rotation and inversions, from AMI calculations... Table 8—3. Barriers to rotation and inversions, from AMI calculations...
Geometrical Isomerism. Rotation about a carbon-carbon double bond is restricted because of interaction between the p orbitals which make up the pi bond. Isomerism due to such restricted rotation about a bond is known as geometric isomerism. Parallel overlap of the p orbitals of each carbon atom of the double bond forms the molecular orbital of the pi bond. The relatively large barrier to rotation about the pi bond is estimated to be nearly 63 kcal mol (263 kJ mol-i). [Pg.43]

The barriers to rotation in a series of (V,(V-dimethylformamidine derivatives of pyrido-[2,3-d]- and -[3,4-d]-pyridazines have been measured by an NMR method <78JHC1105), and NMR studies have also been used in a study of tautomerism in the latter system <75BSF702). [Pg.234]

Beckmann rearrangement, 4, 292 phototransposition, 4, 204 synthesis, 4, 223 Wittig reaetion, 4, 294 Wolff-Kishner reduetion, 4, 291 Pyrrole, 1-aeyl-barrier to rotation, 4, 193 IR speetra, 4, 21, 181 rearrangement, 4, 41 synthesis, 4, 82 thermal rearrangement, 4, 202 Pyrrole, 2-aeyl-aeidity, 4, 297 cleavage, 4, 289 conformation, 4, 33... [Pg.813]

Pyrrole, 4-ethynyl-2-formyl-3-methyl-synthesis, 4, 222 Pyrrole, formyl-oxidation, 4, 289 reactions, 4, 292 with sulfoxides, 4, 293 synthesis, 4, 223, 274, 287 Pyrrole, 1-formyl-barrier to rotation, 4, 193 Pyrrole, 2-formyl-benzoylation, 4, 220 conformation, 2, 107 4, 193 diacetoxythallium derivative iodination, 4, 216 dipole moment, 4, 194 ketals, 4, 290 protonation, 4, 47 reactions... [Pg.815]

In Eq. (2), the dihedral tenn includes parameters for the force constant, Ky, the periodicity or multiplicity, n and the phase, 8. The magnimde of Ky dictates the height of the barrier to rotation, such that Ky associated with a double bond would be significantly larger that that for a single bond. The periodicity, n, indicates the number of cycles per 360° rotation about the dihedral. In the case of an bond, as in ethane, n would... [Pg.10]

Some fundamental structure-stability relationships can be employed to illustrate the use of resonance concepts. The allyl cation is known to be a particularly stable carbocation. This stability can be understood by recognizing that the positive charge is delocalized between two carbon atoms, as represented by the two equivalent resonance structures. The delocalization imposes a structural requirement. The p orbitals on the three contiguous carbon atoms must all be aligned in the same direction to permit electron delocalization. As a result, there is an energy barrier to rotation about the carbon-carbon... [Pg.9]

Dynamic structural characteristics can also be interpreted in terms of resonance. There is a substantial barrier to rotation about the C—N single bonds in carboxamides. A frequently observed consequence is the nonidentity of NMR peaks due to the syn and anti... [Pg.10]

The calculations of the optimum geometry show a slight lenghthening of the C—H bonds because of the electron release to the tc system. These calculations also reveal a barrier to rotation of the methyl group of about 1.5-2.0 kcal/mol. Interaction between the hydrogens and the n system favors the eclipsed conformation to fliis extent. Let us examine the... [Pg.54]

One of the frmdamental structural facets of organic chemistry, which has been explained most satisfactorily in MO terms, is the existence of a small barrier to rotation about single bonds. In ethane, for example, it is known that the staggered conformation is about 3kcal/mol more stable than the ecl sed conformation so that the eclipsed conformation represents a transition state for transformation of one staggered conformation into another by rotation. [Pg.55]

The property of chirality is determined by overall molecular topology, and there are many molecules that are chiral even though they do not possess an asymmetrically substituted atom. The examples in Scheme 2.2 include allenes (entries 1 and 2) and spiranes (entries 7 and 8). Entries 3 and 4 are examples of separable chiral atropisomers in which the barrier to rotation results from steric restriction of rotation of the bond between the aiyl rings. The chirality of -cyclooctene and Z, -cyclooctadiene is also dependent on restricted rotation. Manipulation of a molecular model will illustrate that each of these molecules can be converted into its enantiomer by a rotational process by which the ring is turned inside-out. ... [Pg.82]

The torsional strain is a sinusoidal function of the torsion angle. Torsional strain results from the barrier to rotation about single bonds as described for ethane on p. 56. For molecules with a threefold barrier such as ethane, the form of the torsional barrier is... [Pg.125]

The 7t-electron delocalization requires proper orbital alignment. As a result, there is a significant barrier to rotation about the carbon-carbon bonds in the allyl cation. The results of 6-31G/MP2 calculations show the perpendicular allyl cation to be 37.8 kcal/mol higher than the planar ion. Related calculations indicate that rotation does not occur but that... [Pg.281]

Aldiough diese structures have a positive charge on a more electronegative atom, diey benefit from an additional bond which satisfies file octet requirement of the tricoordinate carbon. These carbocations are well represented by file doubly bonded resonance structures. One indication of file participation of adjacent oxygen substituents is file existence of a barrier to rotation about the C—O bonds in this type of carbocation. [Pg.283]

Such a structure implies that there would be a barrier to rotation about the C(2)—C(3) bond and would explain why the s-trans and s-cis conformers lead to different excited states. Another result that can be explained in terms of the two noninterconverting excited states is the dependence of the ratio of [2 + 2] and [2 + 4] addition products on sensitizer energy. The s-Z geometry is suitable for cyclohexene formation, but the s-E is not. The excitation energy for the s-Z state is slightly lower than that for the s-E. With low-energy sensitizers, therefore, the s-Z excited state is formed preferentially, and the ratio of cyclohexene to cyclobutane product increases. ... [Pg.773]


See other pages where Barriers to rotation is mentioned: [Pg.192]    [Pg.192]    [Pg.37]    [Pg.390]    [Pg.835]    [Pg.210]    [Pg.616]    [Pg.280]    [Pg.513]    [Pg.263]    [Pg.32]    [Pg.32]    [Pg.32]    [Pg.33]    [Pg.33]    [Pg.209]    [Pg.138]    [Pg.799]    [Pg.800]    [Pg.19]    [Pg.209]    [Pg.60]    [Pg.10]    [Pg.105]    [Pg.130]    [Pg.155]    [Pg.539]    [Pg.692]    [Pg.774]   
See also in sourсe #XX -- [ Pg.139 , Pg.140 , Pg.150 , Pg.162 ]

See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.206 ]

See also in sourсe #XX -- [ Pg.137 ]

See also in sourсe #XX -- [ Pg.151 ]

See also in sourсe #XX -- [ Pg.473 ]

See also in sourсe #XX -- [ Pg.80 ]

See also in sourсe #XX -- [ Pg.136 ]




SEARCH



2.5- Dimethylcyclopentanone barrier to rotation

Amide group barrier to rotation

Barrier to Rotation in Ethane

Barrier to Rotation of

Barrier to internal rotation

Barrier to internal rotation In ethane

Barrier, to bond rotation

Energy barrier, to rotation

Molecules barriers to internal rotation

Rotation barrier

Rotational barrier

© 2024 chempedia.info