Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bare quartz crystal microbalance

Jusys and Bruckenstein [84] have used electrochemical quartz crystal microbalance to study adsorption/desorption of perchlorate and perrhenate ions on a bare polycrystalline Au electrode. The change in the equivalent mass was undoubtedly assigned to the adsorption of both anions in the double-layer region of Au electrode. [Pg.852]

In this work we studied the regularities of a horseradish peroxidase (HRP) layer formation from its aqueous solutions on bare gold surface and that modified with a polyethyleneimine/polystyrene sulfonate bilayer using the quartz crystal microbalance (QCM) technique in liquid phase allowing to achieve highly sensitive mass detection and obtain information on viscoelastic properties of the adsorbed layers [3,4]. [Pg.353]

In the gravimetric method, the adsorbent (usually in the form of powder) is placed into a bulb, which is mounted on a sensitive balance and the bulb is then evacuated. Next, the weight increase of the adsorbent solid as a function of the absorptive gas pressure is monitored at constant temperature. More recently, the quartz crystal microbalance (QCM) technique has been applied this is very sensitive to mass increases. Quartz is a piezoelectric material and the thin crystal can be excited to oscillate in a traverse shear mode at its resonance frequency when a.c. voltage is applied across the metal (usually gold) electrodes, which are layered on two faces of the crystal. When the mass on the crystal increases upon adsorption, its resonance frequency decreases. The increase in the mass is calculated from the reduction in resonance frequency. On the other hand, adsorption on single flat surfaces can also be measured by ellipsometry, which measures the film thickness of transparent films optically using the difference between light reflection from bare and adsorbed surfaces. [Pg.293]

In order for both mass and heat-flow sensors to operate, the thin-film sample must adhere to the top surface of the QCM and be of uniform thickness. The mechanical behaviour of films on the quartz microbalance has been modeled by Kanazawa(12), who examined the amplitude of the shear displacement in the quartz crystal and in the overlying film for several cases. For a 1 volt peak RF applied voltage typical of the Stanford Research Systems oscillator driver, the amplitude of the shear wave of a bare crystal is 132 nm. Mecca [29] has calculated the inertial acceleration at the centre of a similar quartz resonator, and finds that it is roughly 10 g, where g is the gravitational constant. At these extremely high accelerations, powder or polycrystalline samples do not follow the transverse motion of the QCM surface and cannot be used without being physically bound to the surface with a thin adhesive layer. [Pg.152]


See other pages where Bare quartz crystal microbalance is mentioned: [Pg.137]    [Pg.725]    [Pg.208]    [Pg.51]    [Pg.32]    [Pg.147]   


SEARCH



Bare

Microballs

Quartz crystal

Quartz crystal microbalance

© 2024 chempedia.info