Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mossbauer backscattering spectra

Fig. 3.19 Schematic illustration of the measurement geometry for Mossbauer spectrometers. In transmission geometry, the absorber (sample) is between the nuclear source of 14.4 keV y-rays (normally Co/Rh) and the detector. The peaks are negative features and the absorber should be thin with respect to absorption of the y-rays to minimize nonlinear effects. In emission (backscatter) Mossbauer spectroscopy, the radiation source and detector are on the same side of the sample. The peaks are positive features, corresponding to recoilless emission of 14.4 keV y-rays and conversion X-rays and electrons. For both measurement geometries Mossbauer spectra are counts per channel as a function of the Doppler velocity (normally in units of mm s relative to the mid-point of the spectrum of a-Fe in the case of Fe Mossbauer spectroscopy). MIMOS II operates in backscattering geometry circle), but the internal reference channel works in transmission mode... Fig. 3.19 Schematic illustration of the measurement geometry for Mossbauer spectrometers. In transmission geometry, the absorber (sample) is between the nuclear source of 14.4 keV y-rays (normally Co/Rh) and the detector. The peaks are negative features and the absorber should be thin with respect to absorption of the y-rays to minimize nonlinear effects. In emission (backscatter) Mossbauer spectroscopy, the radiation source and detector are on the same side of the sample. The peaks are positive features, corresponding to recoilless emission of 14.4 keV y-rays and conversion X-rays and electrons. For both measurement geometries Mossbauer spectra are counts per channel as a function of the Doppler velocity (normally in units of mm s relative to the mid-point of the spectrum of a-Fe in the case of Fe Mossbauer spectroscopy). MIMOS II operates in backscattering geometry circle), but the internal reference channel works in transmission mode...
Cosine smearing. Because instrument volume and experiment time must both be minimized for a planetary Mossbauer spectrometer, it is desirable in backscatter geometry to illuminate as much of the sample as possible with source radiation. However, this requirement at some point compromises the quality of the Mossbauer spectrum because of an effect known as cosine smearing [327, 348, 349] (see also Sects. 3.1.8 and 3.3). The effect on the Mossbauer spectrum is to increase the linewidth of Mossbauer peaks (which lowers the resolution) and shift their centers outward (affects the values of Mossbauer parameters). Therefore, the diameter of the source y-ray beam incident on the sample, which is determined by a... [Pg.450]

Fig. 3.16 Schematic drawing of the MIMOS II Mossbauer spectrometer. The position of the loudspeaker type velocity transducer to which both the reference and main Co/Rh sources are attached is shown. The room temperature transmission spectrum for a prototype internal reference standard shows the peaks corresponding to hematite (a-Fe203), a-Fe, and magnetite (Fe304). The internal reference standards for MIMOS II flight units are hematite, magnetite, and metallic iron. The backscatter spectrum for magnetite (from the external CCT (Compositional Calibration Target) on the rover) is also shown... Fig. 3.16 Schematic drawing of the MIMOS II Mossbauer spectrometer. The position of the loudspeaker type velocity transducer to which both the reference and main Co/Rh sources are attached is shown. The room temperature transmission spectrum for a prototype internal reference standard shows the peaks corresponding to hematite (a-Fe203), a-Fe, and magnetite (Fe304). The internal reference standards for MIMOS II flight units are hematite, magnetite, and metallic iron. The backscatter spectrum for magnetite (from the external CCT (Compositional Calibration Target) on the rover) is also shown...
Fig. 3.18 Pulse-height analysis (PHA) spectrum (or energy spectrum) for Co/Rh Mossbauer source radiation backscattered nonresonantly and/or resonantly from aluminum and stainless steel plates. Data were obtained with Si-PIN diodes with sensitive area of 1 cm per diode and a thickness of 400 pm (from [36, 46])... Fig. 3.18 Pulse-height analysis (PHA) spectrum (or energy spectrum) for Co/Rh Mossbauer source radiation backscattered nonresonantly and/or resonantly from aluminum and stainless steel plates. Data were obtained with Si-PIN diodes with sensitive area of 1 cm per diode and a thickness of 400 pm (from [36, 46])...
In addition to the four detectors used to detect backscattered radiation from the sample, there is a fifth detector to measure the transmission spectrum of the reference absorber (a- Fe, a- Fe203, Fc304 see Fig. 3.16). Sample and reference spectra are recorded simultaneously, and the known temperature dependence of the Mossbauer parameters of the reference absorber can be used to give a measurement of the average temperature inside the SH, providing a redundancy to measurements made with the internal temperature sensor (see Sect. 3.3.4). [Pg.59]


See other pages where Mossbauer backscattering spectra is mentioned: [Pg.61]    [Pg.60]    [Pg.61]    [Pg.66]    [Pg.67]    [Pg.461]    [Pg.198]    [Pg.378]    [Pg.235]    [Pg.235]    [Pg.2819]    [Pg.2818]    [Pg.139]    [Pg.430]   
See also in sourсe #XX -- [ Pg.61 ]




SEARCH



Backscatter

Backscattered

Mossbauer spectrum

© 2024 chempedia.info