Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Back electron-transfer , peroxyoxalate

Peroxyoxalate chemiluminescence is the most efficient nonenzymatic chemiluminescent reaction known. Quantum efficiencies as high as 22—27% have been reported for oxalate esters prepared from 2,4,6-trichlorophenol, 2,4-dinitrophenol, and 3-trif1uoromethy1-4-nitropheno1 (6,76,77) with the duorescers mbrene [517-51-1] (78,79) or 5,12-bis(phenylethynyl)naphthacene [18826-29-4] (79). For most reactions, however, a quantum efficiency of 4% or less is more common with many in the range of lO " to 10 ein/mol (80). The inefficiency in the chemiexcitation process undoubtedly arises from the transfer of energy of the activated peroxyoxalate to the duorescer. The inefficiency in the CIEEL sequence derives from multiple side reactions available to the reactive intermediates in competition with the excited state producing back-electron transfer process. [Pg.267]

Nevertheless, there are two highly efficient CL systems which are believed to involve the CIEEL mechanism in the chemiexcitation step, i.e. the peroxyoxalate reaction and the electron transfer initiated decomposition of properly substituted 1,2-dioxetanes (Table 1)17,26 We have recently confirmed the high quantum yields of the peroxyoxalate system and obtained experimental evidence for the validity of the CIEEL hypothesis as the excitation mechanism in this reaction. The catalyzed decomposition of protected phenoxyl-substituted 1,2-dioxetanes is believed to be initiated by an intramolecular electron transfer, analogously to the intermolecular CIEEL mechanism. Therefore, these two highly efficient systems demonstrate the feasibility of efficient excited-state formation by subsequent electron transfer, chemical transformation (cleavage) and back-electron transfer steps, as proposed in the CIEEL hypothesis. [Pg.1236]

The peroxyoxalate system is the only intermolecular chemiluminescent reaction presumably involving the (71EEL sequence (Scheme 44), which shows high singlet excitation yields (4>s), as confirmed independently by several authors Moreover, Stevani and coworkers reported a correlation between the singlet quantum yields, extrapolated to infinite activator concentrations (4> ), and the free energy involved in back electron-transfer (AG bet), as well as between the catalytic electron-transfer/deactivation rate constants ratio, ln( cAx( i3), and E j2° (see Section V). A linear correlation of ln( cAx( i3) and E /2° was obtained for the peroxyoxalate reaction with TCPO and H2O2 catalyzed by imidazole and for the imidazole-catalyzed reaction of 57, both in the presence of five activators commonly used in CIEEL studies (anthracene, DPA, PPO, perylene and rubrene). A further confirmation of the validity of the CIEEL mechanism in the excitation step of... [Pg.1267]

Back electron-transfer (BET), peroxyoxalate chemiluminescence, 1268 Back trajectory analysis, analytical methods, 624... [Pg.1444]


See other pages where Back electron-transfer , peroxyoxalate is mentioned: [Pg.1235]    [Pg.1270]    [Pg.1235]    [Pg.1236]    [Pg.1267]    [Pg.1270]    [Pg.140]   


SEARCH



Back electron transfer

Back transfer

Peroxyoxalates (

© 2024 chempedia.info