Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azepine reactions

A radically different course is followed when the reaction of 2-alkyl-substituted thiazoles is periormed in methanol or acetonitrile (335), 2 1 adducts containing seven-membered azepine rings (91) are being formed in which two of the original activated hydrogen atoms have altered positions (Scheme 55). A similar azepine adduct (92) was obtained by... [Pg.98]

Solvent has an important influence on the course of this cycloaddition, and in the reaction of 2,5-dimethylthiazole with DMAD in DMF the product analogous to (415) was obtained. However, in DMSO or acetonitrile a thiazolo[3,2-a]azepine was formed in addition to this product, whereas with THF, dichloromethane or nitromethane, only the thiazoloazepine was isolated. [Pg.151]

The reaction of nitrones with allenes produced three main products an azepine, a pyrrolidinone and an isoxazolidine (Scheme 155) (79JOC4213). The intramolecular cycloaddition of nitrones (529) produced different products depending on the length of n (Scheme 156) (78H(10)257). [Pg.109]

Saturated large rings may form nitrogen radicals by H abstraction from N, or abstraction may occur in the a- or /3-positions in nonnitrogen systems. Oxepane gives the radical in the 2-position, with subsequent cleavage and reclosure of the intermediate carbenoid to cyclohexanol (Section 5.17.2.1.5). In unsaturated large systems a variety of reactions, unexceptional in their nature, are found. Some azepines can be brominated by A -bromosuc-cinimide others decompose under similar conditions (Section 5.16.3.7). [Pg.26]

Diene moieties, reactive in [2 + 4] additions, can be formed from benzazetines by ring opening to azaxylylenes (Section 5.09.4.2.3). 3,4-Bis(trifluoromethyl)-l,2-dithietene is in equilibrium with hexafluorobutane-2,3-dithione, which adds alkenes to form 2,3-bis-(trifluoromethyl)-l,4-dithiins (Scheme 17 Section 5.15.2.4.6). Systems with more than two conjugated double bonds can react by [6ir + 2ir] processes, which in azepines can compete with the [47t + 27t] reaction (Scheme 18 Section 5.16.3.8.1). Oxepins prefer to react as 47t components, through their oxanorcaradiene isomer, in which the 47r-system is nearly planar (Section 5.17.2.2.5). Thiepins behave similarly (Section 5.17.2.4.4). Nonaromatic heteronins also react in orbital symmetry-controlled [4 + 2] and [8 + 2] cycloadditions (Scheme 19 Section 5.20.3.2.2). [Pg.27]

Azepine, 3,5-bis(t-butyl)-l-ethoxycarbonyl-photoaddition reactions, with oxygen, 7, 523... [Pg.522]

IH-Azepine, 1-methoxy carbonyl-cycloaddition reactions, 7, 522 with nitrosobenzene, 7, 520 tricarbonyliron complex acylation, 7, 512-513 conformation, 7, 494 tricarbonylruthenium complex cycloaddition reactions, 7, 520 1 H-Azepine, l-methoxycarbonyl-6,7-dihydro-synthesis, 7, 507... [Pg.523]

H-Azepine, 2-methyl-1-methoxycarbonyl-rearrangement, 7, 504 1 //-Azepine, 3-methyl-1 -methoxycarbonyl-cycloaddition reactions, 7, 520 IH-Azepine, 1-phenyl-synthesis, 7, 542 1 H-Azepine, N-phthalimido-formation, 7, 508 IH-Azepine, N-sulfonyl-UV spectra, 7, 501 1 H-Azepine, tetrahydromethylene-synthesis, 7, 540 IH-Azepine, N-p-tosyl-protonation, 7, 509 synthesis, 7, 537 3H-Azepine, 3-acyl-2-alkoxy-synthesis, 7, 542-543 3H-Azepine, 3-acyl-2-methoxy-rearrangements, 7, 505 3H-Azepine, 2-alkoxy-hydrolysis, 7, 510... [Pg.523]

H-Azepine, 2-allyloxytetrahydro-Claisen rearrangement, 7, 508 3H-Azepine, 2-amino-acylation, 7, 511 effect of acidification, 7, 510 nucleophilic displacement reactions, 7, 514 synthesis, 7, 533, 535 3H-Azepine, 2-amino-7-bromo-synthesis, 7, 529 3H-Azepine, 2-anilino-ring inversion, 7, 495-499 structure, 7, 533... [Pg.523]

Schmidt reaction of ketones, 7, 530 from thienylnitrenes, 4, 820 tautomers, 7, 492 thermal reactions, 7, 503 transition metal complexes reactivity, 7, 28 tungsten complexes, 7, 523 UV spectra, 7, 501 X-ray analysis, 7, 494 1 H-Azepines conformation, 7, 492 cycloaddition reactions, 7, 520, 522 dimerization, 7, 508 H NMR, 7, 495 isomerization, 7, 519 metal complexes, 7, 512 photoaddition reactions with oxygen, 7, 523 protonation, 7, 509 ring contractions, 7, 506 sigmatropic rearrangements, 7, 506 stability, 7, 492 N-substituted mass spectra, 7, 501 rearrangements, 7, 504 synthesis, 7, 536-537... [Pg.524]

H-Dibenz[6,/]azepine, 10,11-dihydro-acylation, 7, 511 alkylation, 7, 511 amination, 7, 512 lithiation, 7, 528 PE spectrum, 7, 502 pharmacological properties, 7, 546 reactions... [Pg.599]

H-Dibenz[6,/]azepine-5-carboxamide pharmacological properties, 7, 546 Dibenz[6,e]azepine-6,11-dione, 10-amino-reactions, 7, 526 Dibenz[6,e]azepinediones intramolecular nucleophilic substitution, 7, 516 synthesis, 7, 531 Dibenz[6,e]azepine-5,11-diones epoxides, 7, 515 reduction, 7, 525... [Pg.599]

Pyridazinium salts, 1-methoxy-reaction with pyridazines, 3, 23 Pyridazino[4,5-6]azepines synthesis, 7, 522 Pyridazino[4,5-d]azepines synthesis, 7, 522 Pyridazinofuroxans synthesis, 6, 425 Pyridazinoheteronins synthesis, 7, 729 Pyridazino[2,3-a]indole synthesis, 4, 297... [Pg.782]

H-Pyrido[3,2-c]azepine, 7-methoxy-nucleophilic displacement reactions, 7, 514 Pyridoazepines synthesis, 7, 535, 540 Pyridoazepinones synthesis, 7, 531 Py rido[2,1-a]benzazepin-6-one physiological properties, 7, 546 Py rido[ 1,2-a]benzimidazoles reactions, 6, 1041... [Pg.797]

NMR, 3, 542 oxidation, 3, 546 phosphorescence, 3, 543 photoelectron spectra, 3, 542 photolysis, 3, 549 reactions, 3, 543-555 with alkenes, 3, 50 with alkynes, 3, 50 with IH-azepines, 3, 552 with azirines, 3, 554 with cyclobutadiene, 3, 551 with cyclopropenes, 3, 550 with dimethylbicyclopropenyl, 3, 551 with heterocyclic transition metal complexes, 7, 28 29... [Pg.852]

Perfluorotetramethylthiadiphosphanorbornadiene and bis(trifluoromethyl) thiadiphosphole can be prepared by thermolysis of an adduct of methanol and hexakis(trifluoromethyl)-l,4-diphosphabarrelene with sulfur [113] (equation 23) Pyrolysis of the adduct of hexafluorinated Dewar benzene and phenyl azide results in ring expansion giving azepine, which photochemically yields an intramolecular 2-1-2 adduct, a good dienophile for the Diels-Alder reaction [114, //5] (equation 24) Thermolysis of fluonnated derivatives of 1,5-diazabicyclo-... [Pg.920]

Stereoselective azepine ring formation via intramolecular ene reaction 97YGK725. [Pg.267]

Reaction of 3-formyl-2-[A-(2-alkenyl)-A-benzylamino]-4//-pyrido[l, 2-n]-pyrimidin-4-ones 252 and primary amines in the presence of MS (4 A) afforded pyrido[l, 2 l,2]pyrimido[4,5-Z)]azepin-6-ones 253 (96T13081). [Pg.225]

Reaction of 2-(A -alkyl-A -benzylamino)- and 2-[A -(rraM-crotyl)-A -ben-zylamino]-3-formyl-4/7-pyrido[l,2-n]pyrimidin-4-ones (260, R = H, Me) with tosylamine gave compounds 268 via compounds 266 and 267 (96T13097). The results of kinetic studies and MP3 calculations on the 3-formyl derivatives 252, 260 and the imines 262, 263 suggested a concerted nature for azepine-ring formation. [Pg.227]

Extension of this work by reacting 5-nitropyrimidine with 0,0-ketene acetals and with other cyclic and non-cyclic enamines showed that also with these electron-rich dienophiles the addition is regioselective and gives rise to the formation of 2-mono- or 2,3-disubstituted 5-nitropyridines (Scheme 30). Thus, reaction of 5-nitropyrimidine with the cyclic N,S-ketene acetals 4,5-dihydro-1 -methyl-2-methylthiopyrrole and 4,5,6,7-tetrahydro-1 -methyl-2-methylthioazepine gives in low yields 2,3-dihydro-1-methyl-5-nitropyr-olo[2,3-h]pyridine and the 5,6,7,8-tetrahydro-9-methyl-3-nitropyrido [2,3-Z)]azepine, respectively (89T2693) (Scheme 30). [Pg.52]

Treatment of piperidine with nitrous acid affords the N-nitroso derivative (190) reduction gives the corresponding hydrazine (191). Condensation of this intermediate with the carbamate (192) obtained from p-toluenesulfonamide leads to the oral hypoglycemic agent tolazemide (193). In a similar vein, reaction of the hydrazine obtained by the same sequence from azepine (194) with the carbamate, 188, gives azepinamide (195). ... [Pg.137]

One gram of 6,7-dihydro-5H-dibenz[c,e] azepine hydrochloride was dissolved in water, made alkaline with concentrated ammonia, and the resultant base extracted twice with benzene. The benzene layers were combined, dried with anhydrous potassium carbonate, and mixed with 0.261 g of allyl bromide at 25°-30°C. The reaction solution became turbid within a few minutes and showed a considerable crystalline deposit after standing 3 A days. The mixture was warmed VA hours on the steam bath in a loosely-stoppered flask, then cooled and filtered. The filtrate was washed twice with water and the benzene layer evaporated at diminished pressure. The liquid residue was dissolved in alcohol, shaken with charcoal and filtered. Addition to the filtrate of 0.3 gram of 85% phosphoric acid in alcohol gave a clear solution which, when seeded and rubbed, yielded 6-allyl-6,7-dihydro-5H-dlbenz[c,e] azepine phosphate, MP about 211°-215°C with decomposition. [Pg.117]


See other pages where Azepine reactions is mentioned: [Pg.430]    [Pg.530]    [Pg.430]    [Pg.530]    [Pg.430]    [Pg.530]    [Pg.430]    [Pg.530]    [Pg.341]    [Pg.22]    [Pg.25]    [Pg.28]    [Pg.59]    [Pg.522]    [Pg.522]    [Pg.523]    [Pg.524]    [Pg.524]    [Pg.599]    [Pg.729]    [Pg.792]    [Pg.822]    [Pg.876]    [Pg.228]    [Pg.401]   
See also in sourсe #XX -- [ Pg.467 ]




SEARCH



Azepine

Azepine cycloaddition reactions

Azepine, N-ethoxycarbonylcycloaddition reactions

Azepine, N-ethoxycarbonylcycloaddition reactions dienes

Azepins

Pyrimido azepines reactions

© 2024 chempedia.info