Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atoms early experiments

The method has been largely restricted to reactions of O atoms. Early experiments were reviewed by Basco and Norrish [196] in 1960. [Pg.47]

Potassium chloride actually has the same stnicture as sodium chloride, but, because the atomic scattering factors of potassium and chlorine are almost equal, the reflections with the indices all odd are extremely weak, and could easily have been missed in the early experiments. The zincblende fonn of zinc sulphide, by contrast, has the same pattern of all odd and all even indices, but the pattern of intensities is different. This pattern is consistent with a model that again has zinc atoms at the comers and tlie face centres, but the sulphur positions are displaced by a quarter of tlie body diagonal from the zinc positions. [Pg.1372]

Early experiments witli MOT-trapped atoms were carried out by initially slowing an atomic beam to load tire trap [20, 21]. Later, a continuous uncooled source was used for tliat purjDose, suggesting tliat tire trap could be loaded witli tire slow atoms of a room-temperature vapour [22]. The next advance in tire development of magneto-optical trapping was tire introduction of tire vapour-cell magneto-optical trap (VCMOT). This variation captures cold atoms directly from the low-velocity edge of tire Maxwell-Boltzmann distribution always present in a cell... [Pg.2469]

Early experiments showed that strong electrical forces can strip electrons from atoms. Atoms can also gain electrons under the influence of electrical force. In fact, much of the chemistry that takes place in the world around us involves electrons shifting from one chemical substance to another. Chemical reactions have no effect, however, on the stmctures of nuclei. All atoms of a particular element have the same number of protons in the nucleus, and these do not change during chemical processes. The defining feature of an element, therefore, is the charge carried by the protons in its nucleus. [Pg.82]

This discussion of the structures of diene polymers would be incomplete without reference to the important contributions which have accrued from applications of the ozone degradation method. An important feature of the structure which lies beyond the province of spectral measurements, namely, the orientation of successive units in the chain, is amenable to elucidation by identification of the products of ozone cleavage. The early experiments of Harries on the determination of the structures of natural rubber, gutta-percha, and synthetic diene polymers through the use of this method are classics in polymer structure determination. On hydrolysis of the ozonide of natural rubber, perferably in the presence of hydrogen peroxide, carbon atoms which were doubly bonded prior to formation of the ozonide... [Pg.243]

Atoms consist of electrons and protons in equal numbers and, in all cases except the hydrogen atom, some number of neutrons. Electrons and protons have equal but opposite charges, but greatly different masses. The mass of a proton is 1.67 X 10 24 grams. In atoms that have many electrons, the electrons are not all held with the same energy later we will discuss the shell stmcture of electrons in atoms. At this point, we see that the early experiments in atomic physics have provided a general view of the structures of atoms. [Pg.7]

Warren, W. S. (2000). The Physical Basis of Chemistry, 2nd ed. Academic Press, San Diego, CA. Chapter 5 presents the results of some early experiments in atomic physics. [Pg.32]

Duncanson and Coulson [242,243] carried out early work on atoms. Since then, the momentum densities of aU the atoms in the periodic table have been studied within the framework of the Hartree-Fock model, and for some smaller atoms with electron-correlated wavefunctions. There have been several tabulations of Jo q), and asymptotic expansion coefficients for atoms [187,244—251] with Hartree-Fock-Roothaan wavefunctions. These tables have been superseded by purely numerical Hartree-Fock calculations that do not depend on basis sets [232,235,252,253]. There have also been several reports of electron-correlated calculations of momentum densities, Compton profiles, and momentum moments for He [236,240,254-257], Li [197,237,240,258], Be [238,240,258, 259], B through F [240,258,260], Ne [239,240,258,261], and Na through Ar [258]. Schmider et al. [262] studied the spin momentum density in the lithium atom. A review of Mendelsohn and Smith [12] remains a good source of information on comparison of the Compton profiles of the rare-gas atoms with experiment, and on relativistic effects. [Pg.329]

Chemical techniques of analysis deal with a very large number of atoms and yield averages over the sample. Once the concept of isotopes was accepted, a search for different isotopes of every element was pursued. The key to the success of this search was the development of a precision instrument that sampled the atoms one at a time. It had been known since the development of the cathode ray tube that positive ions were also produced, and early experiments with these particles revealed singly and doubly charged species of the atoms and molectrles that were contained in the tube. Sir J.J. Thomson observed in 1912 that when neon was the background gas, particles of mass ntrmber 20 and 22 were observed. Attempts to obtain pure samples of the two different atoms by fractionation techniques were unsuccessful, but in retrospect this was because they were both neon isotopes. [Pg.97]

The World War II scientists found out that new elements could also be created in these powerful explosions. Neptunium, plutonium, americium, and curium were discovered in the early atomic bomb experiments. Other actinides such as fermium and... [Pg.60]


See other pages where Atoms early experiments is mentioned: [Pg.448]    [Pg.49]    [Pg.77]    [Pg.77]    [Pg.112]    [Pg.29]    [Pg.3]    [Pg.4]    [Pg.5]    [Pg.355]    [Pg.16]    [Pg.421]    [Pg.31]    [Pg.169]    [Pg.351]    [Pg.27]    [Pg.8]    [Pg.754]    [Pg.4]    [Pg.159]    [Pg.1758]    [Pg.7]    [Pg.757]    [Pg.88]    [Pg.22]    [Pg.51]    [Pg.173]    [Pg.154]    [Pg.134]    [Pg.39]    [Pg.274]    [Pg.307]    [Pg.1976]    [Pg.58]   


SEARCH



Atomic physics, early experiments

Atomization experiments

Atoms early physics experiments

Early Experiences

Early Experiments to Characterize the Atom

Early experiments

Some Early Experiments in Atomic Physics

© 2024 chempedia.info