Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Association Phenomena in Alkyllithium

The initiation and propagation reactions typically show fractional orders of dependence of rate on alkyllithium. The situation is quite complex. The fractional orders for initiation and propagation are seldom the same and often vary depending on the monomer, solvent, and initiator and their absolute as well as relative concentrations. For styrene polymerization by n-butyllithium in aromatic solvents, the initiation and propagation rates are proportional to only the and -powers of n-butyllithium concentration, respectively. These results have been interpreted in terms of the following association equilibria [Pg.433]

Polymerization in aliphatic hydrocarbons is considerably slower than in aromatic hydrocarbons because of decreased dissociation of initiator and propagating ion-pair aggregates. The course of reaction in aliphatic hydrocarbons is complex compared to that in aromatic solvents. Initiation is very slow at the start of reaction hut proceeds with autoacceleration as cross- or mixed association of initiator and propagating ion pairs replaces self-association of initiator. Cross-association is weaker and results in an increased concentration of monomeric initiator. This effect may also explain the higher-order dependence of Rj on initiator (typically between and 1-order) in aliphatic solvents, especially for r- and f-butyllithium. Rp is still -order in initiator independent of solvent. [Pg.434]

The situation is similar qualitatively but differs quantitatively for isoprene and 1,3-buta-diene. The dependence of Rp on initiator varies from g- to -order depending on the specific reaction system. The reaction orders for all monomers are affected hy the relative as well as absolute concentrations of initiator and monomer. Thus the dependence of Rp on initiator for the n-butyllithium polymerization of isoprene in benzene at 30°C is -order at initiator concentrations above 10-4 M but -order at initiator concentrations below 10 4 M [Van Beylen et al., 1988]. Higher initiator concentrations yield higher degrees of aggregation and lower kinetic orders. The excess of monomer over initiator is also important. Higher kinetic orders are often observed as the monomer initiator ratio increases, apparently as a result of breakup of initiator and propagating ion-pair associations by monomer. [Pg.434]

The association phenomena occurring with alkyllithium initiators in nonpolar solvents results in very low polymerization rates. A typical styrene or isoprene polymerization by [Pg.434]


See other pages where Association Phenomena in Alkyllithium is mentioned: [Pg.433]   


SEARCH



Alkyllithium

Alkyllithiums

Association phenomena

© 2024 chempedia.info