Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asahi cyclohexanone

Another pertinent example is provided by the manufacture of caprolactam [135]. Current processes are based on toluene or benzene as feedstock, which can be converted to cyclohexanone via cyclohexane or phenol. More recently, Asahi Chemical [136] developed a new process via ruthenium-catalysed selective hydrogenation to cyclohexene, followed by zeolite-catalysed hydration to cyclo-hexanol and dehydrogenation (Fig. 1.49). The cyclohexanone is then converted to caprolactam via ammoximation with NH3/H202 and zeolite-catalysed Beckmann rearrangement as developed by Sumitomo (see earlier). [Pg.40]

Zeolites have been used as (acid) catalysts in hydration/dehydration reactions. A pertinent example is the Asahi process for the hydration of cyclohexene to cyclo-hexanol over a high silica (Si/Al>20), H-ZSM-5 type catalyst [57]. This process has been operated successfully on a 60000 tpa scale since 1990, although many problems still remain [57] mainly due to catalyst deactivation. The hydration of cyclohexanene is a key step in an alternative route to cyclohexanone (and phenol) from benzene (see Fig. 2.19). The conventional route involves hydrogenation to cyclohexane followed by autoxidation to a mixture of cyclohexanol and... [Pg.65]

Caprolactam (world production of which is about 5 million tons) is mostly produced from benzene through three intermediates cyclohexane, cyclohexanone and cyclohexanone oxime. Cyclohexanone is mainly produced by oxidation of cyclohexane with air, but a small part of it is obtained by hydrogenation of phenol. It can be also produced through selective hydrogenation of benzene to cyclohexene, subsequent hydration of cyclohexene and dehydrogenation of cyclohexanol. The route via cyclohexene has been commercialized by the Asahi Chemical Company in Japan for adipic acid manufacturing, but the process has not yet been applied for caprolactam production. [Pg.138]

The environmental impact of the cyclohexane oxidation could also be reduced. An alternative is to start from benzene and make a selective hydrogenation to form cyclohexene. Ru-based supported catalysts working in the liquid phase and in the presence of a co-catalysts such as Zn (Asahi Chemical Industry process) are selective in the reaction, with yields up to about 60% [247], but with cyclohexane as the main by-product. Cyclohexene is hydrated in the liquid phase with an MFI zeolite as catalyst at moderate temperature (100-130 °C). This reaction is very selective (>99%). This route was primarily developed for the synthesis of adipic acid, but could be used also to reduce the number of products and separation costs in the production of cyclohexanone. [Pg.140]

In recent years the Asahi Corporation has developed a benzene-to-cyclohexene process involving a liquid-liquid two-phase system (benzene-water) with a solid ruthenium catalyst dispersed in the aqueous phase. The low solubility of cyclohexene in water promotes rapid transfer towards the organic phase. An 80000 t annum plant using this process is in operation. Another way to scavenge the intermediate cyclohexene is to support the metal hydrogenation catalyst on an acidic carrier (e. g. silica-alumina). On such a bifunctional catalyst the cyclohexene enters catalytic alkylation of the benzene (present in excess) to yield cyclohexylbenzene [19], which can be converted, by oxidation and rearrangement reactions, into phenol and cyclohexanone. [Pg.409]


See other pages where Asahi cyclohexanone is mentioned: [Pg.244]    [Pg.97]    [Pg.66]    [Pg.97]    [Pg.244]    [Pg.390]    [Pg.244]    [Pg.322]    [Pg.325]    [Pg.97]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Asahi

© 2024 chempedia.info