Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic spectrum

R.W. Greeff http //www.pechiney-chemicals.com, Rit-Chem http //www.ritchem.com, Sigma Soda Aromatic Spectrum Quality Prods. http //www.spectrumchemicai. com Takasago Int l. http //www.takasago.com, Toyotama Perfumery Triple Crown Am. http //www.tripiecrownamerica.com Anisaldehyde diethyl acetal CAS 2403-58-9 EINECS/ELINCS 219-288-6 Synonyms p-(Diethoxymethyl) anisole Uses Fragrance in cosmetics... [Pg.311]

This characteristic is used to analyze aromatics in gas oil cuts an example of a UV absorption spectrum is shown in Figure 3.5. [Pg.55]

Correlations have been found between certain absorption patterns in the infrared and the concentrations of aromatic and paraffinic carbons given by the ndA/method (see article 3.1.3.). The absorptions at 1600 cm due to vibrations of valence electrons in carbon-carbon bonds in aromatic rings and at 720 cm (see the spectrum in Figure 3.8) due to paraffinic chain deformations are directly related to the aromatic and paraffinic carbon concentrations, respectively. )... [Pg.60]

The aromatic shifts that are induced by 5.1c, 5.If and S.lg on the H-NMR spectrum of SDS, CTAB and Zn(DS)2 have been determined. Zn(DS)2 is used as a model system for Cu(DS)2, which is paramagnetic. The cjkcs and counterion binding for Cu(DS)2 and Zn(DS)2 are similar and it has been demonstrated in Chapter 2 that Zn(II) ions are also capable of coordinating to 5.1, albeit somewhat less efficiently than copper ions. Figure 5.7 shows the results of the shift measurements. For comparison purposes also the data for chalcone (5.4) have been added. This compound has almost no tendency to coordinate to transition-metal ions in aqueous solutions. From Figure 5.7 a number of conclusions can be drawn. (1) The shifts induced by 5.1c on the NMR signals of SDS and CTAB... [Pg.145]

Polar solvents shift the keto enol equilibrium toward the enol form (174b). Thus the NMR spectrum in DMSO of 2-phenyl-A-2-thiazoline-4-one is composed of three main signals +10.7 ppm (enolic proton). 7.7 ppm (aromatic protons), and 6.2 ppm (olefinic proton) associated with the enol form and a small signal associated with less than 10% of the keto form. In acetone, equal amounts of keto and enol forms were found (104). In general, a-methylene protons of keto forms appear at approximately 3.5 to 4.3 ppm as an AB spectra or a singlet (386, 419). A coupling constant, Jab - 15.5 Hz, has been reported for 2-[(S-carboxymethyl)thioimidyl]-A-2-thiazoline-4-one 175 (Scheme 92) (419). This high J b value could be of some help in the discussion on the structure of 178 (p. 423). [Pg.422]

The ultraviolet spectra of these compounds are similar to those of trans stilbene or of 2- and 4-stilbazole. The effect on the ultraviolet spectrum of various substituents have been found to parallel in many respects the efiects produced by the corresponding group in derivatives of aromatic hydrocarbons (142). [Pg.353]

Annulene satisfies the Huckel (4n+2) tt electron rule for aromaticity and many of its proper ties indicate aromaticity (Section 11 20) As shown in Figure 13 10a [18]annulene contains two different kinds of protons 12 he on the ring s periphery ( out side ) and 6 reside near the middle of the molecule ( inside ) The 2 1 ratio of outside/inside protons makes it easy to assign the signals in the NMR spectrum The outside protons have a chemical shift 8 of 9 3 ppm which makes them even less shielded than those of benzene The six inside protons on the... [Pg.530]

By analogy to additions of divalent carbon to the Cio aromatic framework, the molecule Cgi was expected to have the norcaradi-ene (II) or the cycloheptatriene (III) structure. Although an X-ray structure was not available, the UV-visible spectrum, NMR spectrum, and cyclic voltammetry supported the cycloheptatriene (III) structure. The researchers then calculated the relative molecular mechanics energies of II and III and found the cycloheptatriene structure stabilized by 31 kcal/mol with respect to the norcaradi-ene structure. Although the calculations do not confirm the structures, they provide additional supporting evidence. [Pg.54]

The precise geometrical data obtained by microwave spectroscopy allow conclusions regarding bond delocalization and hence aromaticity. For example, the microwave spectrum of thiazole has shown that the structure is very close to the average of the structures of thiophene and 1,3,4-thiadiazole, which indicates a similar trend in aromaticity. However, different methods have frequently given inconsistent results. [Pg.33]

The NMR spectrum of the 2-hydroxy-1,3-dioxolylium cation (117) (68JA1884) shows a significant ring current. The aromaticity of vinylene carbonate was pointed out by Balaban (59MI40100). [Pg.33]

A book (B-71MS) and a review by Nishiwaki (74H(2)473) contain much information about the behaviour of pyrazoles under electron impact. The Nishiwaki review covers mainly the hydrogen scramblings and the skeletal rearrangements which occur. One of the first conclusions reached was that pyrazoles, due to their aromatic character, are extremely stable under electron impact (67ZOR1540). In the dissociative ionization of pyrazole itself, the molecular ion contributes about 45% to the total ion current thus, the molecular ion is the most intense ion in the spectrum. [Pg.202]

Absorptions in the UV spectra of thiiranes are observed around 260 nm ( - other transitions are reported in the vacuum UV spectrum, and the calculated lowest singlet transition energies correspond to n - oxirane groups behave as electron withdrawing substituents when attached to aromatic rings as indicated by the UV spectra of 2-arylthiiranes. [Pg.136]

The infrared spectrum of the l-methoxy-l,4-cyclohexadiene shows the absence of strong aromatic absorption at 1600 cm.the ultraviolet spectrum shows absence of absorption at 270 nm., indicating absence of the conjugated isomer. [Pg.110]

Figure 2.7. H NMR spectrum of 3,4-dimethoxyben2aldehyde (6) [aromatic shift range, CDCI3, 25 °C,... Figure 2.7. H NMR spectrum of 3,4-dimethoxyben2aldehyde (6) [aromatic shift range, CDCI3, 25 °C,...
The 7/NMR spectrum displays signals of shielded protons = - 2.35, integral level 1) and of deshielded ones = 10.45 and 9.39, integral levels 1 1). This reflects a ring current due to aromaticity as described for annulenes and porphyrins in section 2.5.2. To conclude, the reaction involves an oxidative cyclisatlon of 2,5-bis(2-pyrrolylmethyl)-17/-pyrrole 2 with 47/-trlazole-3,5-dlaldehyde 3 to the corresponding 2,3-diazaporphyrin 4, following the 3-t-l pathway of porphyrin synthesis. Two non-equivalent tautomers may exist these are the diaza[ 18]annulene 4a and the tetraaza[18]annulene 4b. [Pg.213]

The C NMR spectrum of the metabolite shows 16 signals instead of 8 as expected from the elemental composition determined by high-resolution mass spectrometry. Moreover, aromaticity of the 2,6-xylenol is obviously lost after metabolism because two ketonic carbonyl carbon atoms (5c = 203.1 and 214.4) and four instead of twelve carbon signals are observed in the shift range of trigonal carbon nuclei (5c = 133.1, 135.4, 135.6 and 139.4) in the C NMR spectra. To conclude, metabolism involves oxidation of the benzenoid ring. [Pg.220]

First the five protons (integral) of the //NMR spectrum (Sfj = 7.50 - 7.94) in the chemical shift range appropriate for aromatics indicate a monosubstituted benzene ring with typical coupling constants 8.0 Hz for ortho protons, 1.5 Hz for meta protons.). The chemical shift values especially for the protons which are positioned ortho to the substituent Sn = 7.94) reflect a -M effect. Using the CH COLOC plot it can be established from the correlation signal hclS = 66.AI7.94 that it is a benzoyl group A. [Pg.242]

One of the most common modes of characterization involves the determination of a material s surface chemistry. This is accomplished via interpretation of the fiag-mentation pattern in the static SIMS mass spectrum. This fingerprint yields a great deal of information about a sample s outer chemical nature, including the relative degree of unsaturation, the presence or absence of aromatic groups, and branching. In addition to the chemical information, the mass spectrum also provides data about any surface impurities or contaminants. [Pg.552]


See other pages where Aromatic spectrum is mentioned: [Pg.509]    [Pg.84]    [Pg.1375]    [Pg.305]    [Pg.357]    [Pg.81]    [Pg.348]    [Pg.2497]    [Pg.509]    [Pg.84]    [Pg.1375]    [Pg.305]    [Pg.357]    [Pg.81]    [Pg.348]    [Pg.2497]    [Pg.41]    [Pg.48]    [Pg.585]    [Pg.1442]    [Pg.1462]    [Pg.54]    [Pg.145]    [Pg.146]    [Pg.154]    [Pg.81]    [Pg.542]    [Pg.19]    [Pg.21]    [Pg.65]    [Pg.160]    [Pg.21]    [Pg.206]    [Pg.215]    [Pg.259]    [Pg.148]    [Pg.198]    [Pg.553]    [Pg.593]    [Pg.259]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Spectra aromatics

© 2024 chempedia.info